مقاله تنفس در گیاهان

مقاله تنفس در گیاهان (docx) 43 صفحه


دسته بندی : تحقیق

نوع فایل : Word (.docx) ( قابل ویرایش و آماده پرینت )

تعداد صفحات: 43 صفحه

قسمتی از متن Word (.docx) :

فهرست مطالب TOC \o "1-3" \h \z \u تنفس در گیاهان PAGEREF _Toc313822824 \h 3تنفس PAGEREF _Toc313822825 \h 4تبادل گازها در بخشهای مختلف گیاه PAGEREF _Toc313822826 \h 5شدت تنفس PAGEREF _Toc313822827 \h 5اثر عوامل درونی و برونی در تنفس PAGEREF _Toc313822828 \h 6کسر تنفسی PAGEREF _Toc313822829 \h 7تنفس مقاوم به سیانید PAGEREF _Toc313822830 \h 7آیا تنفس موجب کاهش عملکرد می‌شود؟ PAGEREF _Toc313822831 \h 8انواع تنفس PAGEREF _Toc313822832 \h 9شدت نسبي تنفس PAGEREF _Toc313822833 \h 10عواملي كه بر شدت تنفس اثر مي گذارند PAGEREF _Toc313822834 \h 10نقطه موازنه گاز كربنيك PAGEREF _Toc313822835 \h 13تنفس نوري PAGEREF _Toc313822836 \h 13فتوسنتز تنفس و تنفس نوری در گیاهان عالی: PAGEREF _Toc313822837 \h 15فتوسنتز PAGEREF _Toc313822838 \h 15واکنش های نوری (فتوشیمیاییی) PAGEREF _Toc313822839 \h 16واکنشهای تاریکی PAGEREF _Toc313822840 \h 17سیستمهای فتوسنتز C3 و C4 PAGEREF _Toc313822841 \h 17تنفس نوری PAGEREF _Toc313822842 \h 20سه عامل عمده در رشد و نمو گیاهان عبارتند از : فتوسنتز، تنفس و تعرق PAGEREF _Toc313822843 \h 21فتوسنتز : PAGEREF _Toc313822844 \h 21تنفس : PAGEREF _Toc313822845 \h 22فتوسنتز: PAGEREF _Toc313822846 \h 23تنفس : PAGEREF _Toc313822847 \h 23تعرق: PAGEREF _Toc313822848 \h 24دی اکسید کربن در گلخانه PAGEREF _Toc313822849 \h 24تراز های تکمیلی برای دی اکسید کربن : PAGEREF _Toc313822850 \h 30مبادلة طبیعی هوا : PAGEREF _Toc313822851 \h 31فتوسنتز : PAGEREF _Toc313822852 \h 32در چه زمان هایی تأمین دی اکسید کربن صورت می گیرد؟ PAGEREF _Toc313822853 \h 33جدول ظرفیت مشعل مورد نیاز برای تثبیت ppm 1300 دی اکسید کربن در گلخانه PAGEREF _Toc313822854 \h 34توزیع دی اکسید کربن در گلخانه : PAGEREF _Toc313822855 \h 34خسارت ناشی از تأمین دی اکسید کربن بر روی گیاهان : PAGEREF _Toc313822856 \h 35توجه : PAGEREF _Toc313822857 \h 36دی اکسید کربن تکمیلی : PAGEREF _Toc313822858 \h 37دی اکسید کربن – طول عمر گیاه : PAGEREF _Toc313822859 \h 39دی اکسید کربن- دما : PAGEREF _Toc313822860 \h 40دی اکسید کربن - نور PAGEREF _Toc313822861 \h 41جدول تأثیر نور تکمیلی و دی اکسید کربن بر رشد محصول گوجه فرنگی PAGEREF _Toc313822862 \h 41دی اکسید کربن – مواد مغذی : PAGEREF _Toc313822863 \h 42منابع مورد استفاده: PAGEREF _Toc313822864 \h 43 تنفس در گیاهان تنفس یعنی واکنشهای شیمیایی اساسی که منجر به شکسته شدن مولکولهای مواد آلی و رها شدن انرژی می‌شود. انرژی آزاد شده هدف فعالیتهای حیاتی مانند جنبشهای سیتوپلاسمی می‌گردد.دید کلی -295275591185گیاهان و سایر جانداران موقعی می‌توانند به زندگی ادامه دهند که قدرت تجزیه مولکولهای پیچیده مواد آلی (غذا) و استفاده از انرژی اندوخته شده در آنها را دارا باشند. عمل اکسیداسیون مواد آلی که منتهی به آزاد شدن انرژی می‌شود، مستلزم جذب اکسیژن از راه منافذ روی برگ ، ساقه و ریشه گیاه است. بنابراین تظاهرات خارجی تنفس عبارت است از: جذب و دفع یعنی مبادلات گازی بین گیاه و محیط. در برابر فتوسنتز که به ساخته شدن مواد آلی منتهی می‌شود، تنفس قرار دارد که طی آن مولکولهای حاصل از عمل فتوسنتز شکسته شده و انرژی حاصل از آنها صرف فعالیتهای حیاتی مانند ساختن برخی مواد ، جذب و شناسایی مواد محلول ، جنبشهای سیتوپلاسمی و جنبش اندامهای گیاهی ، بوجود آمدن پتانسیل الکتریکی و بطور کلی رشد و نمو می‌شود. در فرایند کاتابولیزم (Catabolism) سه فرایند جداگانه بحث می‌شود: تنفس (Respiration) ، تخمیر (Fermentation) و تنفس نوری (Photorespiration) که مورد آخر مخصوص گیاهان است. -241935816610تنفس ما می‌توانیم آنچه که در سلولهای جانوری و گیاهی به هنگام تنفس اتفاق می‌افتد، تحت فرمول کلی زیر نشان دهیم: 95250217170 تنفس در سلولهایی صورت می‌گیرد که در شرایط هوازی قرار بگیرند. در جریان تنفس 3 گروه مواد مورد استفاده قرار می‌گیرند: کربوهیدراتها ، پروتئین‌ها و چربی‌ها. تنفس عمدتا در میتوکندری‌ها صورت می‌گیرد که شامل سه مرحله است: مرحله اول تنفس در سیتوپلاسم سلولها صورت می‌گیرد. این مرحله گلیکولیز نامیده می‌شود که طی آن قند 6 کربنی مانند گلوکز شکسته شده و به دو مولکول 3 کربنی بنام اسید پیروویک تبدیل می‌شود. مرحله دوم واکنشها در ماتریکس میتوکندری اتفاق می‌افتد که با حضور اسید پیروویک است. این واکنشها به صورت چرخه‌ای انجام می‌شوند که چرخه کربس نامیده می‌شود، در هر چرخه یک مولکول اسید پیروویک به 3 مولکول تبدیل شده و انرژی حاصل از شکسته شدن آن در ناقلهای انرژی مانند و ، ذخیره می‌شود. مرحله سوم واکنشهای تنفس در غشای میتوکندری انجام می‌شود که دارای سیستم ناقل الکترون است. بدین ترتیب که در اول زنجیره ناقلهای انرژی ، الکترون از دست داده و گیرنده نهایی این الکترونها ، اکسیژن ( ) است که در این فرایند انرژی به صورت ATP (آدنوزین تری فسفات) در می‌آید که انرژی قابل استفاده برای تمام اعمال سلولی است. تبادل گازها در بخشهای مختلف گیاه -2571752680970در گیاهان اندامهای ویژه‌ای جهت رساندن اکسیژن به سلولها و انتقال دی‌اکسید کربن حاصل از تنفس آنها به خارج وجود ندارد. تبادل گازها از راه روزنه‌ها و عدسک‌ها ، انجام می‌شود. در بین سلولهای تشکیل دهنده اندامهای گیاه وجود حفرات کوچک و بزرگ و اتاقکهای زیر روزنه‌ای و سلولهای کروی با حفرات فراوان در زیر عدسک‌ها موجب می‌شوند که تبادلات گازی در گیاه به سهولت انجام شود. گازهای حاصل از فرایند فتوسنتز و تنفس برحسب قوانین انتشار گازها در گیاه بین اندامهای گیاه و محیط خارج مبادله می‌گردد.در ریشه‌ها نیز عمل تنفس با استفاده از هوای موجود بین ذرات خاک انجام می‌شود و چنانچه برای مدت طولانی فضاهای موجود بین ذرات خاک از آب پر شود، بسیاری از گیاهان دچار خفگی ریشه شده و آثار آن پس از مدتی در بخش هوایی ظاهر می‌شود. از جمله این آثار بی رنگ شدن شاخه و برگهای نورسته ، ریزش اندامهای تولید مثلی و توقف در رشد گیاه است. در عده‌ای از گیاهان مردابی انشعاباتی از ریشه به خارج از آب در آمده تشکیل اندامهای تنفسی به نام شش ریشه‌ها را می‌دهند که برای تبادل هوا کمک موثری به شمار می‌آیند. شدت تنفس تنفس به عنوان یک پدیده فیزیولوژیکی با تغییرات عواملی که آن را کنترل می‌کنند، تغییر می‌کند و دارای شدت است. می‌توان شدت آن را به صورتهای مختلف تعریف کرد. یکی از تعریفها به صورت زیر است: مقدار اکسیژن جذب شده و یا دی‌اکسید کربن ( ) دفع شده را در واحد زمان شدت تنفس گویند. امروزه از دستگاههای فیزیکی مانند آنالیز مادون قرمز برای اندازه گیری شدت تنفس استفاده می‌گردد. این دستگاه ، دستگاهی است که می‌تواند مقدار را اندازه بگیرد، زیرا که مولکولهای اشعه مادون قرمز را جذب می‌کنند، بنابراین با انجام تنفس ، مقدار در هوای خروجی افزایش می‌یابد و دستگاه جذب بیشتری را نشان می‌دهد. شدت تنفس در گیاهان و در یک گیاه بر حسب اندامهای مختلف ، متفاوت است، ولی در هر حال در مقایسه با تنفس جانوران ، تنفس در گیاهان بسیار ضعیف است. در اندامهای در حال رشد و جوان و در دانه‌های در حال رویش ، میزان تنفس بالاست. همچنین در گلهای در حال باز شدن و بویژه در اندامهای تولید مثلی ، تنفس شدیدتر است. اثر عوامل درونی و برونی در تنفس فیزیولوژیستها در پاسخ به اینکه آیا میزان تنفس گیاه در تاریکی و در روشنایی نسبت به هم متفاوت است یا خیر ، آزمایشهای متعددی انجام داده‌اند، تا اینکه اخیرا مشخص شده که در بعضی از گیاهان ، روشنایی محرک افزایش تنفس است. به این پدیده ، تنفس نوری گفته می‌شود. فرایند تنفس به شدت ، تحت تاثیر دمای محیط است، زیرا که در مراحل مختلف تجزیه قند ، آنزیمهایی دست‌اندرکارند و واکنشهای شیمیایی متعددی انجام می‌شود که همگی تحت تاثیر دمای محیط قرار دارند. افزایش اکسیژن محیط موجب افزایش شدت تنفس است. شدت تنفس بر حسب سن و نوع اندامهای مختلف گیاه ، متفاوت است. افزایش رطوبت بویژه در دانه‌ها ، عامل بسیار مهمی در افزایش تنفس و در افزایش فعالیتهای گیاه است. کسر تنفسی اگر گازهای تنفسی گیاه را بطور دقیق بررسی کنیم، می‌بینیم که معمولا حجم دی‌اکسید کربن دفع شده از گیاه برابر حجم اکسیژن جذب شده نیست. نسبت بین این دو را کسر تنفسی می‌نامند. این کسر برحسب مراحل مختلف رویش و گل دادن گیاه متفاوت بوده و تا حدودی نوع ماده‌ای که در واکنشهای تنفسی تجزیه می‌شود را مشخص می‌سازد. در صورت تجزیه هیدراتهای کربن این کسر برابر یک می‌شود. در تجزیه مواد لیپیدی و پروتئینی و اسید مالیک به ترتیب در دو مورد اول کمتر از یک و در مورد آخر بیشتر از یک خواهد بود. تنفس مقاوم به سیانید می‌توان تنفس را بوسیله بعضی از مواد شیمیایی مختل کرد. این مواد شیمیایی به دو گروه تقسیم می‌شوند: سموم تنفسی مانند یون سیانید و آزید . افزون بر این مونوکسید کربن موجب مسمومیت تنفسی می‌شود. برای اینکه این ترکیبات مانع انتقال الکترون به اکسیژن می‌شوند و در نتیجه ATP ساخته نمی‌شود. گروه دوم مواد که در زنجیره انتقال الکترون در غشای میتوکندری تاثیر می‌گذارند، مانند دی نیترو فنل که در این مورد هم ATP ساخته نمی‌شود. تعدادی از ارگانیزمها مانند قارچها و جلبکها و بعضی از گیاهان وقتی تحت تاثیر یون سیانید قرار می‌گیرند، بلافاصله از بین می‌روند، ولی تعدادی از گیاهان نسبت به یون سیانید مقاوم هستند. برای اینکه این گیاهان دارای یک مسیر فرعی انتقال الکترون هستند که الکترون می‌تواند از این مسیر به اکسیژن منتقل شود. منتها در این مسیر ATP ساخته نمی‌شود و انرژی آزاد شده در تنفس به صورت گرما تلف می‌شود و این گونه در مقابل سیانید مقاومت می‌کنند. در بعضی گیاهان مطالعاتی صورت گرفته که نتیجه این بوده است که هنگام گرده افشانی این سیستم فرعی در گلها فعال است (بدون تاثیر سیانید)، مانند خانواده گل شیپوری که تحت تاثیر این تنفس ، ترکیبات معطر پراکنده می‌شود که این ترکیبها موجب جلب توجه حشرات گرده افشان می‌گردد. آیا تنفس موجب کاهش عملکرد می‌شود؟ -30480086360تنفس می‌تواند مقدار قابل توجهی از کربن تثبیت شده روزانه توسط فتوسنتز را مصرف نماید و این مقدار بجز تلفات ناشی از تنفس نوری است. تغییرات متابولیزم گیاه تا چه حد عملکرد محصولات زراعی را تحت تاثیر قرار می‌دهد؟ تنفس شامل دو بخش است: تنفس رشد که شامل عمل آوری کربن احیا شده به منظور تامین رشد گیاه جدید است و تنفس نگهداری که جزئی از تنفس لازم برای حفظ سلولهای بالغ در وضعیت حیاتی است. این فرایند بیش از 50 درصد کل جریان تنفسی را به خود اختصاص می‌دهد. در راس تمام اینها ، مسیر چاره مقاوم به سیانید وجود دارد که مقادیر قابل توجهی از کربن احیا شده سلول را مصرف کرده و ظاهرا هیچ محصولی تولید نمی‌کند. برآوردهایی که از این مسیر در ریشه‌های گندم بدست آمده، نشانگر تلفاتی معادل 6 درصد عملکرد دانه نهایی از این طریق است. گرچه توان بالقوه افزایش عملکرد از طریق کاهش مقدار تنفس وجود دارد، لکن پیش از اعمال چنین تغییراتی ، درک بهتر جایگاهها و مکانیزمهای کنترل رشد و نمو گیاهان اگر چه تنفس ظاهراً نوعي تبادلات گازي ، همراه با مصرف اكسيژن و توليد گاز كربنيك است ، امّا تعريف درست آن اكسيداسيون مواد غذايي درون سلول وآزاد شدن ا نرژي از آن ها است. تنفس ممكن است هميشه با توليد گاز كربنيك و مصرف اكسيژن همراه نباشد. اعمالي از قبيل مصرف اكسيژن ،دفع گازكربنيك و توليد حرارت آثار ظاهري ناشي از انجام عمل تنفس است كه در همه سلول هاي زنده روي مي دهد. عمل تنفس در گياهان از دو گروه واكنش تشكيل مي شود : 1- كنش هاي فيزيكي و مكانيكي كه تبادلات گازهاي تنفسي را بين گياه و محيط خارج ميسرو تنظيم مي كنند. 2- كنش هاي شيميايي كه سبب تثبيت اكسيژن و آزاد شدن گاز كربنيك از گياه مي گردد. انواع تنفس تنفس هوازي: در برخي از مراحل اين تنفس ، استفاده از اكسيژن جو به عنوان يك ماده تركيب شونده ضرورت دارد . تنفس غير هوازي : در اين نوع تنفس به اكسيژن جو نياز اجباري نيست ولي در حضور آن نيز مي تواند صورت گيرد. فرايند اصلي تنفس ايجاد موادي با ميل تركيبي شديد است .اين مواد دردرجه اول قادربه ايجاد تركيبات مهم اند ، دردرجه دوم نقش آن هاايجاد انرژي لازم براي اعمال حياتي سلول است وبخشي نيزدرجريان اعمال تنفس ، عملاً به صورت حرارت ازبين مي رود. حاصل كلي مصرف انرژي ناشي ازتنفس ، ساخته شدن تركيباتي نظير كلسترول و اسيد هاي چرب با استفاده از ATPو همچنين ساير مواد پر انرژي است . نقش تنفس گذشته از ايجاد مولكول هاي پرانرژي ATPو ايجاد تركيبات درون سلولي وحفظ شكل ساختار پروتوپلاسم درتوزيع كروموزوم ها وسايراجزا درجريان تقسيم سلولي،باعث گردآمدن مواد محلول ونقل وانتقال آن ها نيزمي شود. برخي ازپديده هاي حياتي مانند رشد ساقه درخلاف جهت نيروي جاذبه ، رشد ريشه درجهت نيروي جاذبه و ... فرايند هايي مرتبط با انرژي حاصل از تنفس هستند. شدت نسبي تنفس شدت نسبي تنفس بستگي به اندام وبافت تنفس كننده آن وهمچنين شرايط محيط داشته ، بسيار متغير است . بين مقدارپروتوپلاسم موجود در يك بافت وشدت نسبي تنفس آن ارتباط وجود دارد. شدت تنفس در بافت هاي مريستمي به سبب بالا بودن مقدار پروتوپلاسم نسبت به وزن خشك بافت، بيشترين مقدار را داشته ،حّد آن نسبت به بافت هاي كاملاً متمايز شده وتخصيص يافته به مراتب بيشتراست. هرقدر بافت ها مسن تر وپير تر شوند شدت تنفس در آن ها كم تر مي شود.شدت تنفس در دانه ها و هاگ هاي گياهان در حال خواب وغيرفعال ، كم ترين حّد ممكن را دارد. عواملي كه بر شدت تنفس اثر مي گذارند عوامل متعدد دروني وبيروني بر شدت تنفس گياه اثرمي گذارند كه مهّم ترين آنها عبارتند از: شرايط پروتوپلاسمي سلول هاي سازنده بافت : شدت تنفس در بافت هاي جوان ومريستمي كه سرشار از پروتوپلاسم اند بيشتر از بافت هاي پير است . شرايط ساختاري اجزاء درون سلولي ،توزيع سيستم آنزيمي ازيك سلول به سلول ديگرو همچنين تعداد ميتوكندري ها اثرات مهمي بر شدت تنفس دارند. درجه حرارت محيط : تأثيري نسبتاً پيچيده بر شدت تنفس دارد . درحالت كلّي،درجه حرارت دريك حدّ معين شدت تنفس راافزايش داده ،هرقدردرجه حرارت از اين حد معين افزايش يابد به علت غير فعال شدن آنزيم هاي درون بافتي شد ت تنفس نيز كاهش مي يابد . اگر درجه حرارت ازحد معين پايين تربرود، شدت تنفس نيز كم مي شود و در صفر درجه تقريباً وضع نامحسوس پيدا مي كند. مواد غذايي : افزايش مواد در محلول هاي غذايي ، شدت تنفس را در گياه بالا برده كمبود آن برعكس سبب نقصان شدت تنفس مي شود. نسبت تراكم اكسيژن ويا گاز كربنيك جو: همراه با ديگرعوامل وشرايط محيطي ، همچنين در فاصله اي كه گياه در معرض تراكم آن ها قرار دارد ، اثرات متفاوتي برشدت تنفس دارند. درحالت طبيعي وعادي ،مقدار اكسيژن و گاز كربنيك جو تقريباً وضعي ثا بت داشته و يا تغييرات آن ها كم است و اين نوسانات تاثيرقابل ملاحظه اي برشدت تنفس ندارند. به هر حال اگر تراكم اكسيژن جو به عللي بيش از 5 درصد نسبت به وضع عادي آن در جوتغيير كند ، مثلاً كاهش يابد ، بديهي است كه شدت تنفس نيز كاهش مي يابد واين كاهش احتمالاً به علت افزايش ظرفيت تخميري برخي بافت ها نسبت به بافت هاي ديگراست . تراكم زياد گازكربنيك در حدود10درصد يا بيشترمسلماً شدت تنفس را كاهش خواهد داد وعلت اين كاهش تا حدودي به افزايش غلظت قند در سلول ها ارتباط دارد . مشخص ترين اثرات -نغييرات غلظت گاز كربنيك و اكسيژن اتمسفر روي تنفس بي شك اثراتي است كه روي ريشه ها ، ساقه ها ي زير زميني و بذرها دارد . غلظت گاز كربنيك اتمسفر خاك ممكن است بعضي اوقات تا 10درصد وگاهي خيلي بيشتر باشد ، در صورتي كه محتويات اكسيژن دربعضي خاك ها پاره اي مواقع ممكن است تقريباًصفر باشد. اثرمعمولي هر يك يا هر دواين شرايط كند ساختن شدت تنفس است. از دست رفتن آب درون بافتي :سبب پژمردگي برگ ها وساير اندام هاي گياه شده ، شدت تنفس را بالا مي برد. وقتي برگ ها يا ساير اندام هاي گياهي به حالت پژمردگي نزديك مي شوند ، نشاسته جمع شده اغلب به قند ها تبديل مي شود و افزايش محتويات كربوهيدرات محلول سلول ها ممكن است باعث افزايش شدت تنفس شود . تغييرات نور: نوركه سبب بالارفتن شدت فتوسنتزدراندام هاي سبزمي شود بر شدت تنفس اين اندام ها نيز اثر مي گذارد. تجزيه وتحليل اثر نور روي فتوسنتز به سبب وقوع فرايندي به نام تنفس نوري كه در بسياري گياهان به علت نور روي مي دهد پيچيده است. اثرات نورروي " تنفس در تاريكي ‍" اصطلاحي كه در مقابل تنفس نوري به كارمي رود ،غير مستقيم است . در اندام هاي سبز گياه ، نورممكن است به علت تأ ثيرش روي ميزان سوبستريت حاصل از فتوسنتز بر ميزات تنفس اثر گذارد. قرار گرفتن اندام هاي گياهي در معرض روشنايي مستقيم معمولاً منجر به افزايش درجه حرارت درآن ها مي شود كه ممكن است به نوبه خودسبب افزايش شدت تنفس شود. زخمي شدن اندام : سبب افزايش شدت تنفس مي گردد. وقتي يك غده ي سيب زميني را با بريدن دو قسمت كنيم ، دو قسمت بريده آن بيش از حالت كامل سيب زميني ، گازكربنيك ازدست مي دهند وعلت اين امراحتمالاً مربوط به افزايش قند در آن ها است.افزايش قند در سلول هايي كه به محل جراحت نزديك اند بيشتر از سلول هايي است كه از آن دوراند. اثرات مكانيكي : در برخي گونه هاي گياهي با يك تحريك مكانيكي ساده مثلاً مالش ملايم برگ يا خم نمودن پهنك آن ، شدت تنفس افزايش مي يابد. برخي مواد شيميايي : حتي به مقداركم مانند سيانورها ،مونواكسيد كربن فلوريد ها و ...در مراحلي ازتنفس به صورت بازدارنده آنزيمي عمل كرده ، شدت تنفس را كم مي كنند. نقطه موازنه گاز كربنيك درشدت نورغيرمحدود كننده غلظت گازكربنيكي وجوددارد كه درآن فتوسنتز جبران تنفس رامي كندومقدارفتوسنتزظاهري صفراست.غلظت گازكربنيك اتمسفري كه در اين شرايط وجود دارد، نقطه موازنه گاز كربنيك خوانده مي شود. مقداراين كميّت به طورقابل ملاحظه اي با شرايط محيطي مخصوصاً درجه حرارت و هم چنين ازيك نوع گياه به گياه ديگرتفاوت مي كند . بعضي نمونه ها نقطه موازنه ي بسيارپاييني دارند مانند: ذرت، نيشكر،ذرت خوشه اي . تنفس نوري اين اصطلاح به يك نوع تنفس مشخصي اطلاق مي شود كه بسياري ازانواع گياهان وقتي درمعرض نورقراردارند ازخود نشان مي دهند. اين تنفس فقط دربافت هاي كلروفيل دارروي مي دهدوبخشي ازآن طي مكانيزم فتوسنتزدركلرو پلاست ها بخشي دراندامك هاي سلولي به نام پراكسي زوم ها و بخشي در ميتوكندري ها به وقوع مي پيوندد. پراكسي زوم ها اندامك هاي كروي شكل به قطر5/ 1- 2/0ميلي ميكرون هستند و به نظر مي رسد كه دروهله اول با اين فرايند مربوط اند. همبستگي نزديكي ميان نقطه موازنه گازكربنيك وتنفس نوري وجود دارد. گونه هايي از قبيل ذرت كه نقطه موازنه گاز كربنيك پاييني دارند تنفس نوري اندكي از خود نشان مي دهند يا اين فرايند در آن ها روي نمي دهد . گونه هايي مانند گوجه فرنگي كه نقطه موازنه گاز كربنيك درآن ها نسبتاً بالاست تنفس نوري زيادي دارند. ميزان تنفس نوري را با اندازه گيري توليد گازكربنيك برگ يا شاخه برگ داري كه دراتمسفرعاري ازگازكربنيك درمعرض نور قراردارد مي توان تعيين كرد. اين قبيل اندازه گيري ها نشان داده اند كه در توتون ، شدت تنفس نوري تقريباً 4برابر شدت تنفس ميتوكندري آن است. درمقابل ، گياه ذرت درروشنايي افزايش مختصري در تنفس نسبت به تاريكي نشان مي دهد ، اگر چه شدت تنفس ميتوكندريايي اين گونه تقريباً با توتون برابر است . اسيد گليكوليك يك عامل متابوليسمي عمده درتنفس نوري است . اين ماده محصول فرعي فتوسنتز است كه دركلروپلاست ها احتمالاًازبرخي مواد كه بالاخره به قند تبديل مي شوند ساخته مي شود . دراولين مرحله اكسيداسيون ،اسيد گليكوليك در پراكسي زوم ها تحت تاًثير آنزيم اسيد گليكوليك اكسيداز به اسيد گلي اكسيليك و پراكسيد هيدروژن تجزيه مي شود .پراكسيد هيدروژن تشكيل شده بعداً توسط آنزيم كاتالازبه اكسيژن وآب برگردانده مي شود . مراحل بعدي متابوليسم اسيد گليكوليك كاملاًروشن نيست ولي شواهدي هست كه اسيد گلي اكسيليك بعداً درپراكسي زوم ها به گليسين تبديل مي شودودومولكول گليسين به نوبه خود به سرين تبديل مي شوند . مرحله اخيرظاهرا ًدرميتوكندري ها انجام مي گيرد وتوليد گازكربنيك به نظرمي- رسد كه طي اين مرحله ازسلسله فعل وانفعال ها وقوع يابد. سرين مجدداً به مواد حدواسط توليد شده در فتوسنتز ملحق مي شود . روابط متقابل نزديكي ميان فرايند هاي فتوسنتز و تنفس نوري وجود دارد. به طور كلّي گياهاني كه شدت تنفس نوري در ان ها بالاست از نظر فتوسنتز از گياهاني كه شدت تنفس نوري آن ها پايين است راندمان كم تري دارند . درتنفس نوري بسياري ازمواد حد واسط فتوسنتزتوليد نمي شود و اسيد گليكوليك ساخته مي شود كه دراكسيداسيون آن فسفات يا استرفسفات دخالت ندارد.بنابراين برخلاف تنفسي كه درتاريكي صورت مي گيردتنفس نوري منجربه توليد تركيبات انرژي زا از قبيل ATP نمي شود. فتوسنتز تنفس و تنفس نوری در گیاهان عالی: گازکربنیک هوا ماده اصلی است که پیکره گیاهان از آن ساخته شده است. در حقیقت فرآیند فتوسنتز به وسیله احیای گار کربنیک و تشکیل ترکیبات انرژی زا مواد خام آلی و انرژی لازم برای کلیه واکنش های سازنده مواد در گیاه را فراهم می کند و در نتیجه انجام این واکنش ها مواد غذایی مورد نیاز نظیر هیدراتهای کربن، پرتئین ها و چربی ها تولید می شوند عوامل متعددی مانند کمبود مواد عالی و آب ، از طریق کاهش فتوسنتز عملکرد گیاهان را محدود می کنند . بر خلاف اهمیت آشکاری که فتوسنتز در عملکرد گیاهان زراعی دارد. رابطه ی بین فتوسنتز و عملکرد مستقیم نمی باشد . یک گیاه زراعی که سرعت فتوسنتز در برگ های آن زیاد است، الزاما محصول اقتصادی زیادی نخواهد داشت . از سوی دیگر چنانچه فتوسنتز در یک محصول زراعی به اندازه کافی انجام نگیرد، نمی تواند عملکرد مطلوبی داشته باشد. فتوسنتز فرایندی که گیاهان سبز به وسیله آن قادرند انرژی تابشی خورشید را دریافت کنند و از آن در تولید قند ها استفاده کنند بی نهایت پیچیده است تا بحا ل این فرآ یند بصورت آزمایشگاهی تکرار نشده است . شیمی فتوسنتز را میتوان در فرایندی خلاصه کرد که در طی آن آب به گاز کربنیک تزکیب می شود و هیدراتهای کربن را تولید می کند. این فرآیند در حضور کلروفیل که رنگدانه ای سبز رنگ در برگ گیاهان است انجام می گیرد و برای پیشبرد واکنش های فتوسنتز به انرژی نورانی نیاز دارد. مراحلی که طی آنها ،گیاه انرژی نورانی را دریافت می کند واکنش های روشنایی یا واکنش های نوری فتوسنتز شناخته می شود و مراحلی که احیای گاز کربنیک و تشکیل قند ها را در بر می گیرد مربوط به واکنش های تاریکی می باشد. زیرا این واکنش ها بعد از اینکه انرژی نورانی توسط شبکه مولکولی دریافت کننده ی نور، گرفته شده و در ترکیبات شیمیایی خاصی ذخیره شد، در تاریکی انجام می گیرند. واکنش های نوری (فتوشیمیاییی) دریافت نور مستلزم همکاری نزدیک بین تعداد زیادی از مولکول های کلروفیل و ترکیبات شیمیایی دیگری است که به عنوان کاتالیزور در واکنش های مختلف شرکت دارند اگر چه جزئیات این فرآیند هنوز به طور کامل روشن نیست ولی به هر حال این واکنش ها در ابتدا با جذب یک فوتون بوسیله مولکول های کلروفیل آغاز می شود. مولکول های کلروفیل در اثر جذب انرژی تحریک می شوند، این مولکول های تحریک شونده قادر به انجام کار هستند و می توتنند انرژی شیمیایی خود را به سایر ترکیبات انتقال دهند. در شبکه کلروپلاستی هر 200 مولکول کلروفیل که به نام فتوسیستم خوانده می شود دریافت شد و به محل واکنش انتقال یافت؛ بین انرژی نوارانی منتقل شده و مولکول آب واکنش های فیزیکی-شیمیایی انجام می گیرد. در نتیجه این واکنش ها، مولکول آب شکسته می شود و اکسیژن یک الکترون آزاد می شود. الکترون آزاد شده به سطح انرژی بالاتری صعود می کند. تصور می شود که نور ابتدا به وسیله فتوسنتز جذب می شود، سپس یک الکترون فعال می شود و اکسیژن خارج می شود الکترون فعال شده، توسط گروهی از مولکول ها ناقل الکترون از بین شبکه فتوسنتز 2 و فتوسنتز 1 عبور می کند و جریان عبور مقداری از انرژی پتانسیل شیمیایی خود را از دست می دهد. در این فرآیند هر چند انرژی پتانسیل الکترون تنزل می یابد ولی یکی از پروتئین ها ک وسیله انرژی الکترون فعال شده است به عنوان کاتالیزور در واکنش میان آدنوزین دی فسفات (ADP) و یون فسفات مصزفی وارد عمل می شود و در نتیجه آدنوزین تری فسفات (ATP) تشکیل می شود بنابراین قسمتی از انرژی دریافت شده از فوتون به پیوند پر انرژی فسفات در مولکول ATP منتقل می شود. به دنبال تشکیل ATP الکترون به فتوسنتز I منتقل می شود و آن را فعال می کند . دومین الکترون وارد سیستم می گردد و مو جب تو لید شدن NADPH می گردد . ATP و NADPH انرژی رایج سلولی هستند و واکنش های مر حله تاریکی را به پیش می برند . واکنشهای تاریکی واکنشهای شیمیایی که توسط آنها گازکربنیک در جریان فتوسنتز احیا می شود سیکل پیچیده ای را در بر می گیرد که به آن سیکل می گویند. در سیکل کلوین NADPH و ATP برای ساخته شدن ریبولوز او ۵ دی فسفات RUDP به مصرف می رسد. RUDP در حضور آنزیم ریبولوز دی فسفسات کربوکسیلاز با گاز کربنیک ترکیب می شود و دو مولکول اسید 3 فسفو گلیسیریک ایجاد می کند.RUDP سپس از طریق تعدادی واکنش شیمیایی بوسیله ترکیباتی که شامل 3،4،5،6و7 اتم کربن هستند، مجددا ساخته می شود. هر بار که این چرخه تکرار می شود، یک اتم کربن خالص در گیاه تثبیت می شود. کربن به وسیله CO2 هوا وارد چرخه کلوین می شود واز طریق واکنش های گلوکز و فروکتوز برای تولید ساکاروز از سیکل خارج می شود . ساکاروز که از کلروپلاست به درون سلولهای گیاهی منتقل می شود. انرژی و کربن را برای کلید فعل وانفعالات ساخت مواد (سنتزی) در گیاه تامین می شود. سیستمهای فتوسنتز C3 و C4 مطالعات در سالهای اخیر مشخص کرده است که بعضی گونه ها در جریان فتوسنتز دارای واکنش های اضافی دیگر نیز می باشند. دراین گونه ها نخستین محصول قابل تشخیص در اثر تثبیت CO2 ، ترکیب سه کربنه 3 فسفو گلیسیریک نیست بلکه به جای آن ترکیب چها کربنه ای بنام اگزالوستیک ایجاد می شود و این اسید نیز به سرعت به اسید مالیک یا اسید اسپارتیک تبدیل می شود. به منظور تفکیک این دو مسیر متفاوت فتوسنتز ، معمولا گونه هایی که در فتوسنتز آنها سیکل کلوین به تنهایی انجام می گیرد ، به گیاهان C3 معروفند و به همین ترتیب علامت C4 برای گونه هایی به کار می رود که در آنها اولین محصول پایدار در اثر احیای CO2 یک اسید چهار کربنه است. برخی از گونه های زراعی دارای سیستم فتوسنتز C3 و گروهی نیز C4 می باشند. گونه های C4 نظیر ذرت، سورگوم و نیشکر در شرایط مطلوب در زمره پر محصول ترین گونه های زراعی قرار دارند. به نظر می رسد در سیستم فتوسنتزهای C4 تغییرات تکاملی در جهتی انجام گرفته است که باعث می شود، غلظت گازکربنیک در محل آنزیم RUDP کربوکسیلاز که عمل کربوکسیلاسیون را انجام می دهد، افزایش یابد. برگها در گونه های C4 دارای نظم ساختمانی ویژه ای هستند و این نظم باعث انجام واکنش های بیوشیمی می شود. ساختمان برگ در گونه های C4 شامل تعداد زیادی رگبرگ است که کلر رگبرگ توسط محفظه یا غلافی از سلول های سبزرنگ پاراشیمی محصور شده است. دسته های غلاف آوندی دارای دیواره ضخیم و نعداد زیادی کلروپلاست درشت است. با تحقیقات زیادی که بر روی گیاه نیشکر(C4) انجام گردید مشخص شد که در برگ های نیشکر گازکربنیک نخستین بار فقط در سلولهای مزوفیل برگ تثبیت می شود. آنزیمی که مسئول اولین مرحله تثبیت CO2 در برگهای نیشکر است، فسفوانول پیروات کربوکسیلاز(PEPکربوکسیلاز) است، این آنزیم میل ترکیبی زیادی با گاز کربنیک دارد و کارایی آن در جذب CO2 حتی در غلظت پایین گارپزکربنیک موجود در جو، زیاد است. آنزیم PEP کربوکسیلاز در سلولهای مزوفیل یافت می شود و CO2 به وسیله این آنزیم تثبیت شده و به سرعت به اسید مالیک تبدیل شده و به سلول های غلاف آوندی پمپ می گردد. در درون سلول های غلاف آوندی اسید مالیک دکربوکسیله شده و CO2 آزاد می گردد و به چرخه کلوین وارد می شود که حاصل این چرخه تولید ATP و NADPH می باشد. تثبیت CO2 در گیاهان C3 و C4 هزینه هایی از نظر انزژی برای گیاه در بر دارد . در گیاهان C3 به ازا تثبیت هر مولکول CO2 ، سه عدد ATP و دو عدد NADPH هزینه می گردد اما در گیاهان C4 به ازا تثبیت هر مولکول CO2 ، پنج عدد ATP و دو عدد NADPH هزینه می گردد. پس انرژی صرف شده برای تثبیت CO2 احتیاج به دو آنزیم کربوکسیلاسیون دارند این دو آنزیم بسیار متضاد با هم عمل می کنند و بسیار رقیب هم هستند و باید به نحوی از یکدیگر جدا نگه داشته شوند. در گیاهان C4 جدایی دو آنزیم PEP کربوکسیلاز و RUBISCO به صورت مکانی است. بدین مفهوم که در سلولهای مزوفیل تنها PEP کربوکسیلاز داریم و RUBISCO نداریم و در غلاف فقط RUBISCO داریم و PEP کربوکسیلاز نداریم. تنفس فرایندی است که بوسیله آن گیاهان و جانوران ترکیبات مختلف کربن را مصرف می کند تا انرژی آنها به اشکال مفیدتری نظیر انرژی پتانسیل شیمیایی ATP، NADPH تبدیل کنند. بسیاری از واکنشهای لازم برای تنفس در سال 1930 به وسیله کریس و همکارانش کسف گردید. واکنش هایی که قندها را اکسید می کنند وآب و گاز کربنیک تولید می کنند، معمولا چرخه کریس یا چرخه تری کربوکسید نامیده می شود. در طی فرآیند تنفس گیاه انرژی نورانی را که در جریان فتوسنتز در ترکیبات کربن تثبیت کرده ، در زمان و مکان مورد نیاز به اشکال قابل استفاده تغییر می دهد در حالت کلی این فرآیند به صورت زیر است : انرژی +H2O + CO2 ------------------- O2 + CH2O به نظر می رسد تنفس عکس عمل فتوسنتز می باشد. تمامی سلول های گیاهی برای انجام کلیه اعمال ضروری خود نظیر انتقال قندها، سنتز پروتئین ها، ساختن دیواره سلولی وسایر فعالیت های حیاتی به انرژی تنفس متکی هستند. لذا عملکرد بالا بدون شدت تنفس بالا امکانپذیر نیست. در سالهای اخیر دانشمندان به همبستگی بین تنفس ورشد گیاه علاقه مند شده اند. مک گری، تنفس را در شبدر سفید ارزیابی و اطلاعات خود را در معادله خطی زیر بیان کرده است: R = KP + CW که در آن R میزان تنفس گیاه در تاریکی، P میزان فتوسنتز در طول روز، W وزن خشک گیاه و K و C ضریب ثابتی می باشند. میزان تنفس در گیاه با افزایش دما به سرعت افزایش می یابد و تقریبا به ازا هر 10 درجه سانتیگراد افرایش دما این میزان دو برابر می شود . تصور می شود بعد از رسیدن دما به نقطه ای که انرژی مورد نیاز گیاه حاصل می شود افزایش بیشتر دما باعث تنفس مفرط می شود، که برای گیاه مضر است. برخی معتقدند که ممکن است با اصلاح واریته هایی با میزان تنفس کمتر ، عملکرد افزایش می یابد. بسیاری از گیاهان بیایانی وسایه دوست دارای میزان تنفس کمی هستند و همین، علت بقای آنها در شرایط و دمای کشنده محیط می باشد. در جریان فرایند های تنفس تر کیبات شیمیایی متفاوت تولید می شوند که این ترکیبات شیمیایی گوناگون نه تنها رابطه ی مهمی در زنجیره ی تنفسی می با شند بلکه بسیاری از آنها به عنوان اجزای ساختمانی ترکیبات حیاتی درون گیاه عمل می کند پس تنفس بسیار پیچیده تر از ان است که فر آیندی منحصرا عکس فتو سنتز باشد. تنفس نوری در گیاهان مشابه به علت پمپ CO2 به داخل غلاف انرژی بیشتری نسبت ته گیاهان C3 مصزف می شود و علت این پمپاژ را باید در ضعف آنزیم RUBP جستجو کرد. نقطه ضعف این آنزیم در دو خصلتی بودن انست یعنی اینکه هم خصلت کربوکسیلازی دارد و هم خصلت اکسیژنازی بر خلاف آنزیم PEP که تنها خصلت کربو کسیلازی دارد. زمانی که غلظت اکسیژن در محیط بالا باشد در این صورت RUBP خصلت اکسیژن نازی داشته و تولید PGA کاهش می یابد در نهایت کارایی فتو سنتز بسیارکم می شود . RUBP+O2 ----> PGA+PG اگر چه در نگاه اول فکر می کنیم که یک PGA تو لید می شود اما واقعیت این است که قسمتی از این PG وارد سیکلی بنام سیکل گلیکولات میشود که حدود 25% از کاهش تولید PGA را جبران می کند . ولی در مجموع تنفس نوری موجب کاهش اثر فتو سنتز به میزان 25% می شود .به مجموع فعالیت اکسیژنازی RUBP و سیکل جبرانی تنفس نوری می گویند . علت انجام تنفس نوری در گیاهان زراعی در واقع رقابت O2 وCO2 بزای ترکیب شدن با RUBP است و با کاهش اکسیژن و افزایش CO2 محیط ، میزان تنفس نوری در گیاهان C3 کاهش می یابد و در غلظت اکسیژن 1% میزان تنفس نوری به صفز می رسد سه عامل عمده در رشد و نمو گیاهان عبارتند از : فتوسنتز، تنفس و تعرق فتوسنتز : یکی از اختلافات عمده بین گیاهان و حیوانات در کره زمین، توانایی گیاهان برای ساخت داخلی غذای خودشان می باشد. یک گیاه برای تولید غذای مورد نیاز خود به انرژی حاصل از تابش آفتاب، دی اکسید کربن موجود در هوا و آب موجود در خاک نیازمند است. اگر هر یک از این اجزاء دچار کمبود شود، فتوسنتز یا همان تولید غذا متوقف خواهد شد. در واقع اگر هر یک از این عوامل برای مدت زیادی قطع شود، گیاه از بین خواهد رفت. هر گونه بافت گیاه سبز، توانایی انجام فرآیند فتوسنتز را داراست. کلروپلاست ه در سلولهای گیاه سبز، حاوی رنگدانه های سبزی هستند که کلروفیل نامیده می شوند و انرژی نور را به تله می اندازند. با این وجود برگها (با توجه به ساختار بخصوصشان) عمده ترین قسمت برای تولید غذا می باشند. بافتهای داخلی حاوی سلولهایی با مقادیر فراوان کلروپلاست می باشند؛ که در یک نظم و ترتیب خاص، به راحتی به آب و هوا اجازه جابجایی می دهند. لایه های اپیدرمی محافظ بالایی و پایینی برگها، حاوی تعداد زیادی دهانه می باشند که؛ از دو سلول نگهبان بخصوص در هر سمت تشکیل شده اند. سلولهای نگهبان، جابجایی (ورود دی اکسیدکربن و خروج اکسیژن و بخار آب از برگها) گازهای درگیر در فتوسنتز را کنترل می کنند. اپیدرمی های پایینی برگها به طور طبیعی، حاوی بیشترین تعداد دهانه می باشند. تنفس : کربوهیدرات های ساخته شده در طول فرآیند فتوسنتز، تنها وقتی برای گیاه با ارزش هستند؛ که به انرژی تبدیل شده باشند. این انرژی در فرآیند ساخت بافتهای جدید مورد استفاده قرار می گیرد. فرآیند شیمیایی که طی آن قند و نشاستة تولید شده در فرآیند فتوسنتز، به انرژی تبدیل می شود؛ تنفس نامیده می شود. این فرآیند مشابه سوزاندن چوب یا زغال سنگ برای تولید حرارت یا انرژی می باشد. اگر اکسیژن محدود شود یا در دسترس گیاه قرار نگیرد، تنفس یا متابولیسم ناهوازی رخ خواهد داد. تولیدات حاصل از این واکنش، اتیل الکل یا اسید لاتیک و دی اکسید کربن می باشد. این فرآیند به عنوان فرآیند تخمیر یا اثر پاستور شناخته می شود*. این فرآیند در صنایع لبنیات کاربرد فراوان دارد. هم اکنون باید واضح باشد که تنفس عکس فرآیند فتوسنتز می باشد. بر خلاف فتوسنتز، فرآیند تنفس در طول شب نیز به خوبی روز صورت می گیرد. تنفس در کلیة اشکال زندگی و در همة سلولها صورت می گیرد. آزاد شدن دی اکسید کربن اندوخته شده و گرفتن اکسیژن همواره در سطح سلول اتفاق می افتد. در ادامه مقایسه ای بین فتوسنتز و تنفس آمده است. فتوسنتز: تولید غذا می نماید انرژی را ذخیره می کند در سلول هایی که حاوی کلروپلاست هستند رخ می دهد اکسیژن آزاد می کند آب مصرف می نماید دی اکسید کربن مصرف می نماید در روشنایی صورت می پذیرد تنفس : غذا رابرای تولید انرژی گیاه به مصرف می رساند انرژی آزاد می کند در همة سلولها صورت می گیرد اکسیژن را مورد استفاده قرار می دهد آب تولید می نماید دی اکسید کربن تولید می نماید در تاریکی هم به خوبی صورت می پذیرد تعرق: تعرق فرآیندی است که در طی آن گیاه آب از دست می دهد. عمدتاً این کار از طریق دهانة برگها صورت می گیرد. تعرق فرآیندی ضروری است که حدود 90% از آب وارد شده به گیاه از طریق ریشه ها را مورد استفاده قرار می دهد.10% باقیماندة آب در واکنشهای شیمیایی و در بافتهای مختلف گیاه به مصرف می رسد. فرآیند تعرق برای حمل مواد معدنی ازخاک به گیاه، خنک نمودن گیاه در فرآیند تبخیر و نیز برای جابجایی قند و مواد شیمیایی گیاه کاملاً ضروری است. مقدار آب ازدست رفتة گیاه به چندین فاکتور محیطی از جمله دما، رطوبت، وزش باد یا جابجایی هوا وابسته است. با افزایش دما و یا جابجایی هوا، رطوبت نسبی کاهش یافته و این باعث می شود که سلولهای نگهبان در برگها، دریچه های استومتا را باز کنند؛ به این ترتیب نرخ تعرق افزایش می یابد. دی اکسید کربن در گلخانه سالهای زیادی است که به منافع غنی سازی دی اکسید کربن در گلخانه ها، برای افزایش رشد و تولید گیاهان پی برده شده است. دی اکسید کربن یکی از ضروری ترین اجزاء فتوسنتز می باشد. همانطور که در بخش قبل اشاره شد، فتوسنتز یک فرآیند شیمیایی است که انرژی نور خورشید را برای تبدیل دی اکسید کربن و آب به مواد قندی در گیاهان سبز مورد استفاده قرار می دهد؛ سپس این مواد قندی در خلال تنفس گیاه برای رشد آن مورد استفاده قرار می گیرند. اختلاف بین نرخ فتوسنتز و تنفس، مبنایی برای میزان انباشتگی ماده خشک در گیاهان می باشد. در تولید گلخانه ای، هدف همة پرورش دهندگان، افزایش ماده خشک و بهینه سازی اقتصادی محصولات می باشد. دی اکسید کربن با توجه به بهبود رشد گیاهان، باروری محصولات راافزایش می دهد. بعضی از مواردی که باروری محصولات به وسیلة غنی سازی دی اکسید کربن افزایش داده می شود عبارتند از : گلدهی قبل از موعد بازده میوه دهی بالاتر کاهش جوانه های ناقص در گلها بهبود استحکام ساقة گیاه و اندازة گل بنابراین پرورش دهندگان گل و گیاه باید دی اکسید کربن را به عنوان یک مادة مغذی در نظر بگیرند. برای اکثر محصولات گلخانه ای، میزان خالص فتوسنتز به واسطة بالا بردن میزان دی اکسید کربن از ppm 340 تا ppm1000 افزایش می یابد. آزمایش های صورت گرفته بر روی بیشتر گیاهان نشان داده است که با افزایش میزان دی اکسید کربن تا ppm1000 فتوسنتز به اندازة 50% افزایش خواهد یافت. البته برای بعضی از گیاهان اضافه کردن دی اکسید کربن تا ppm 1000 در نورکم، از لحاظ اقتصادی، توصیه نمی شود. برای بعضی دیگر از گیاهان مانند گل لاله ، هیچ پاسخی نسبت به اضافه کردن دی اکسید کربن مشاهده نشده است. دی اکسیدکربن در خلال باز شدن دهانه ای، توسط فرآیند پخش به گیاه وارد می شود. استومتاها سلولهای اختصاصی هستند که به طور عمده در قسمت زیرین برگها و در لایة بیرونی قرار گرفته اند. باز و بسته شدن این سلولها اجازه می دهد که معاوضة گازها صورت گیرد. تغلیظ 2CO دراطراف برگها، بالا گیری دی اکسید کربن در گیاهان را قویاً تحت تأثیر قرار می دهد. تغلیظ بیشتر 2CO، منجر به بالا گیری بیشتر 2CO در گیاهان می شود. سطح نور، دمای برگها و دمای هوای محیط، رطوبت نسبی، تنش آبی، غنی سازی دی اکسید کربن و میزان اکسیژن موجود در هوا و برگها از جمله فاکتورهای محیطی هستند که باز و بسته شدن استومتا را کنترل می نمایند. غلظت دی اکسید کربن موجود در هوای محیط چیزی در حدود ppm340 (از لحاظ حجمی) می باشد. همة گیاهان در این شرایط به خوبی رشد می نمایند؛ اما بواسطة بالا رفتن غلظت 2CO تا1000 ppm، نرخ فتوسنتز نیز افزایش خواهد یافت؛ که در نهایت منجر به افزایش مواد قندی و کربو هیدراتهای قابل دسترس برای رشد گیاهان می شود. هر گونه گیاه سبز در حال رشد در یک گلخانه کاملاً بسته (که اصلاً تهویه نمی شود و یا اینکه تهویة کمی دارد) غلظت دی اکسید کربن را در طول روز به کمتر از ppm200 کاهش می دهد. کاهش در نرخ فتوسنتز، هنگامی که غلظت 2CO از ppm 340 به ppm 200 می رسد، برابر است با افزایش آن هنگامی که غلظت 2CO از ppm 340 به ppm 1300 می رسد. با یک حساب سرانگشتی در می یابیم که افت سطح دی اکسید کربن به پایینتر از سطح محیط تأثیرات بسیار بیشتری نسبت به افزایش آن به بالاتر از سطح محیط خواهد داشت. در گلخانه های جدید و به بخصوص در سازه های دو جداره که نفوذ هوای بیرون کاهش یافته است؛ غلظت دی اکسید کربن در زمانهای بخصوصی از سال به راحتی می تواند به پایینتر از ppm 340 افت نماید. این موضوع تأثیرات منفی قابل توجهی برروی رشد گیاهان خواهد داشت. تهویة مناسب در طول روز می تواند میزان دی اکسید کربن را تا نزدیکی سطح محیطی آن بالا ببرد؛ اما میزان آن هرگز به سطح محیطی ppm340 باز نخواهد گشت. تأمین دی اکسید کربن تنها روش غلبه بر این اختلاف سطح و افزایش غلظت 2CO به بالاتر از ppm 340 است؛ که برای اکثر محصولات گلخانه ای پر منفعت می باشد. میزان غنی سازی دی اکسید کربن به نوع محصول، شدت نور، دما، تهویه، مرحلة رشد گیاه و ملاحظات اقتصادی بستگی دارد. نقطة اشباع دی اکسید کربن در غلظتی حدود 1000 تا ppm 1300 حاصل می شود. غلظت کمتری (800 تا ppm1000) برای محصولاتی مانند گوجه فرنگی، خیار، فلفل و کاهو توصیه می شود. افزایش غلظت دی اکسید کربن دورة رشد گیاه را کوتاه می نماید (5 تا10 درصد)، کیفیت و بازده محصول را بهبود می بخشد و همچنین اندازه و ضخامت برگها را افزایش می دهد. منابع دی اکسید کربن: دی اکسید کربن را می توان از سوزاندن سوختهای پایة کربن مانند گاز طبیعی، پروپان، نفت سفید و یا اینکه مستقیماً از تانکهای مخصوص نگهداری دی اکسید کربن خالص تهیه نمود. البته هر یک از منابع فوق الذکر دارای مزایا و معایب بالقوه ای می باشند. وقتی که گاز طبیعی، پروپان یا نفت سفید سوزانده می شود، تنها دی اکسید کربن تولید نمی شود؛ بلکه همراه با آن حرارت نیز تولید می شود، که به طور طبیعی موجب گرم شدن سیستم می شود. باید توجه داشت که احتراق ناقص یا سرایت مواد سوختی به داخل گلخانه، می تواند منجر به از بین رفتن گیاهان شود. اکثر منابع گاز طبیعی و پروپان دارای مقدار کمی (به اندازة کافی پایین) آلودگی می باشند. باید توجه داشت، در سوختی که برای تأمین دی اکسید کربن مورد استفاده قرار می گیرد، مقدار سولفور بیشتر از 0.02% (از لحاظ وزنی) نباشد. احتراق سوختها همچنین منجر به تولید رطوبت می شود. برای گاز طبیعی به ازای هر متر مکعب گاز سوخته شده، kg 1.4 بخار آّب تولید می شود. در مورد پروپان، مقدار رطوبت تولید شده به ازاء هر کیلوگرم دی اکسید کربن، کمی پایین تر از گاز طبیعی است. گاز طبیعی، پروپان و سوختهای مایع در ژنراتورهای مخصوص دی اکسیدکربن سوزانده می شوند. اندازة دستگاهها (Btu تولید شده) و اندازة جریان هوای افقی در گلخانه، تعداد و موقعیت این دستگاهها را تعیین می نماید. مهمترین مشخصة این مشعلها این است که؛ سوخت باید به طور کامل سوزانده شود. بعضی از کارخانجات مشعلهایی ساخته اند که می تواند هم گازطبیعی و هم پروپان را مورد استفاده قرار دهد. به علاوه این واحدهای تولید 2CO دارای خروجی قابل تنظیم هستند. اشکال بالقوه این سیستم این است که حرارت و بخار آب تولید شده ممکن است موجب تأثیر موضعی بر دما و شیوع بیماریها در گلخانه شود. به عنوان یک پیشنهاد، می توان قسمتی از گاز دودکش بویلر گاز طبیعی، مربوط به سیستم حرارتی آب داغ، را به عنوان وسیله ای جهت تأمین دی اکسید کربن به داخل گلخانه هدایت نمود. البته این سیستم باید به چگالنده گاز دودکش، که برای تأمین این هدف طراحی شده است، مجهز باشد. نکتة قابل توجه این است که همة بویلرها (بخصوص بویلرهای قدیمی) برای این کار طراحی نشده اند. بویلرهای گاز طبیعی باید احتراق تمیزی داشته باشند؛ اکسیدهای نیتروژن (NOx) و اتیلن تولید نکنند و یا حداقل، مقدار آنها در محصولات احتراق کم باشد. در این سیستم، لوله های گاز در جایی که بویلر به لولة دودکش متصل شده است، بیرون کشیده می شوند. واحد های چگالنده برای کاهش دما و رطوبت گاز ورودی به گلخانه طراحی می شوند. یک سیستم کنترل مانیتوری، پیوسته محافظت ایمنی لولة گاز را برای کنترل سطح مونو اکسید کربن انجام می دهد. سطح مجاز مونو اکسیدکربن (CO) در لولة گاز چیزی بین 6 تا ppm 10 است. یک هواکش ظرفیت پایین که دارای مکش کلی کمی است، حجم ثابتی از گاز را مکش می نماید. یک هواکش دیگر برای اختلاط گازهای دودکش با هوای گلخانه مورداستفاده قرار می گیرد؛ و در پایان این مخلوط به داخل گلخانه هدایت می شود. این سیستم شرایطی را فراهم می نماید که دی اکسید کربن از پایین به میان محصولات هدایت شده و قبل از خروج از منافذ و دریچه ها، در میان گیاهان به سمت بالا حرکت نماید. سیستم تحویل باید به گونه ای طراحی شده باشد که توزیع یکسانی را در سراسر گلخانه در بر داشته باشد. می توان یک سیستم حرارتی آب داغ را برای افزایش بازده و نیز تأمین دی اکسید کربن در طول روز (هنگامی که نیازی به حرارت وجود ندارد) به یک تانکر عایق جهت ذخیرة آب داغ مجهز نمود. حرارت تولید شده در طول روز به وسیلة تانکر آب داغ ذخیره شده و در هنگام شب بر حسب نیاز مورد استفاده قرار می گیرد. تأمین دی اکسید کربن با استفاده از گاز دودکش در تابستان، حرارت ذخیرة بسیار بیشتری از آنچه که به هنگام شب مورد نیاز است، حاصل می نماید. در طول ماههایی از تابستان، از آنجا که دمای محیط بیرون به هنگام شب اغلب بالاتر از 22 درجة سانتیگراد می باشد، حرارت ذخیره شده مورد نیاز نیست؛ در این موقعیت باید کاربرد دی اکسید کربن را محدود نمود. دی اکسید کربن مایع (حتی با وجود اینکه معمولاً گرانتر است) مورد پسند بسیاری از پرورش دهندگان گل و گیاه قرار گرفته است. مزایای عمدة استفاده از دی اکسید کربن مایع عبارتند از : خلوص فراورده عدم تولید حرارت و رطوبت عدم نگرانی از زیان رساندن به محصولات کنترل بهتر غلظت دی اکسید کربن در گلخانه انعطاف در وارد کردن دی اکسید کربن به گلخانه در هر زمان دی اکسید کربن خالص در مخازنی که توسط تریلر حمل می شود، به گلخانه منتقل می گردد. تانکرهای نگهداری مخصوص (که معمولاً از فروشنده اجاره می شود)، برای هر واحد گلخانه مورد نیاز است. دی اکسید کربن متراکم به صورت مایع می باشد و باید توسط یک واحد تبخیرکن، تبخیر شود. سیستم توزیع دی اکسید کربن مایع در محیط گلخانه، از لحاظ طراحی و نصب ساده تر می باشد. اکثر استفاده کنندگان از این سیستم، لوله های پلی وینیل کلراید (pvc) انعطاف پذیر18 میلیمتری را مورد استفاده قرار می دهند. این لوله ها باید در فواصل مناسب سوراخ شده باشند. برای یک بهره برداری کوچک ممکن است دی اکسید کربن توسط کپسول فراهم گردد. هنگامی که فرد گلخانه دار برای پرورش گیاهان از کود حیوانی یا دیگر مواد ارگانیک استفاده می کند، غلظت دی اکسید کربن در گلخانه بواسطة فرآیند تفکیک افزایش خواهد یافت. مقدار تولید شده به پایداری کود حیوانی و فعالیت میکروارگانیسم ه، که مواد ارگانیک را به دی اکسید کربن تبدیل می کنند، وابسته است. البته تولید 2CO از کود حیوانی تنها برای حدود یک ماه قابل توجه می باشد. در بعضی از موارد رشد ارگانیک پوشش میانی گیاه مانند الیاف نارگیل، غلظت دی اکسید کربن را در طول شب به حدود ppm 1200 افزایش خواهد داد. این موضوع معمولاً مشکلی ایجاد نمی کند؛ چراکه غلظت دی اکسید کربن در روشنایی روز به طور کاملاً سریع افت می نماید. تراز های تکمیلی برای دی اکسید کربن : امروزه اکثر پرورش دهندگان شرایط محیطی گلخانه را به وسیلة حسگرهای متصل به یک کامپیوتر مرکزی، برای یکپارچه سازی فاکتورهای محیطی مختلف، کنترل می نمایند. یک کنترل کنندة دی اکسید کربن، که معمولاً یک آنالیزگر گازی مادون قرمز ( IRGA ) می باشد، برای نمایش و کنترل حداقل و حداکثر غلظت دی اکسید کربن در گلخانه مورد استفاده قرار می گیرد. واحد IRGA را می توان به تنهایی یا مثل اکثر موارد در اتصال با یک کامپیوتر کنترل کنندة محیط بکار برد. در مورد اخیر، کامپیوتر کنترل کنندة محیط برای کنترل میزان دی اکسید کربن در اجماع با سطح نور، مرحلة تجدید هوا، و سرعت جریان هوا مورد استفاده قرار می گیرد؛ البته واحد IRGA به یک کالیبراسیون روزمره برای اطمینان از دقت اندازه گیری نیازمند است. نرخ تأمین دی اکسیدکربن وابسته به پاسخ محصولات و ملاحظات اقتصادی می باشد. در حالت کلی تأمین دی اکسیدکربن به اندازة ppm 1000 در طول روز، هنگامی که دریچه ها بسته است، توصیه می شود. هنگامی که دریچه ها به اندازة 10% باز می شوند، می توان تأمین دی اکسیدکربن را قطع یا به مقدار 400 تا ppm 600 کاهش داد. برای به دست آوردن بازده اقتصادی بالاتر می توان غلظت دی اکسیدکربن را با توجه به میزان نور تنظیم نمود. موارد زیر تدابیر توصیه شده برای پروش دهندگان سبزیجات می باشد : در روزهای آفتابی در حالیکه دریچه هابسته هستند، میزان دی اکسیدکربن را به اندازة 1000 ppm تأمین نمایید. در روزهای ابری، هنگامی که میزان نور پایینتر از 2watt/m 40 می باشد، تأمین دی اکسیدکربن را تنها به اندازة ppm 400 در نظر بگیرید. با این وجود اکثر پرورش دهندگان گل بدون توجه به میزان نور، غلظت دی اکسیدکربن را به طور ثابت در ppm 1000 در نظر می گیرند. کامپیوتر کنترل کنندة محیط را می توان با توجه به میزان نور، برای تنظیم غلظت دی اکسیدکربن برنامه ریزی کرد؛ اما هنگامی که دریچه ها بیش از 10% باز می شوند و یا با فرارسیدن مرحلة دوم از عملیات فن های خروجی، میزان دی اکسیدکربن را باید در مقدار ppm 400 ثابت نمود. از آنجا که به هنگام شب هیچ فتوسنتزی رخ نمی دهد، طبیعتاً احتیاجی به تأمین دی اکسید کربن نمی باشد. در واقع تغلیظ دی اکسید کربن در نتیجة تنفس گیاه صورت خواهد گرفت. بنابراین مشاهدة غلظت دی اکسیدکربن در حدود 500 تا ppm 600 در اوایل صبح نباید غیر عادی به نظر برسد. دی اکسیدکربن در یک گلخانه به وسیلة مبادلة طبیعی هوا و فتوسنتز کاهش می یابد. مبادلة طبیعی هوا : دزرها و منافذ در گلخانه اجازه می دهند هوای بیرون، که تنها دارای ppm 340 دی اکسید کربن می باشد، به داخل گلخانه نفوذ کند. یک مقدار میانگین برای نفوذ هوا در یک گلخانه می تواند به اندازة تعویض هوای کامل در یک ساعت باشد. برای جبران این رقیق سازی و تثبیت میزان دی اکسید کربن در ppm 1300 ، باید 2m100/2 kg CO0.37 در هر ساعت به محیط گلخانه اضافه شود. باید توجه داشت که برای ارتفاع و عرض بیشتر گلخانه، باید مقدار مزبور را تصحیح نمود. یک گلخانه که دارای پهنای بیشتری نسبت به گلخانة دیگر با همان ارتفاع باشد، حجم هوای نفوذی بیشتری خواهد داشت. برای گلخانه هایی که دارای پوشش دو جداره (دو جدارة پلی اتیلن یا اکریلیک) هستند، مقدار نفوذ هوا به اندازة 4/1 تا 3/1 حجم هوای گلخانه در یک ساعت را می توان انتظار داشت. برای گلخانه هایی که دارای تهویة اجباری هستند، اگر فن ها در حال کار باشند، غلظت دی اکسید کربن در مقدار کمتری تثبیت خواهد شد. فتوسنتز : گیاهان در طول فرآیند فتوسنتز دی اکسید کربن را مورد استفاده قرار می دهند. نرخ مصرف باتوجه به نوع محصولات، شدت نور، دما، مرحلة رشد گیاه و میزان مواد مغذی متفاوت خواهد بود. یک مقدار میانگین مصرف به اندازة 2m100/hr/kg 0.24-0.12 محاسبه شده است. نرخ بالاتری از مصرف در صورتی که روز کاملاً آفتابی باشد وگیاهان کاملاً سبز باشند صورت خواهد گرفت. وقتی که این دو عامل با هم جمع شوند، با توجه به محاسبات صورت گرفته، می باید برای تثبیت غلظت دی اکسید کربن در ppm 1300 (در یک گلخانه استاندارد) حدود 2m100/hr/kg 0.60-0.50 به محیط آن اضافه نمود. برای یک گلخانه با پوشش دوجدارة پلی اتیلن این مقدار برابر با 2m100/hr/kg 0.35-0.25 خواهد بود. در یک گلخانة شیشه ای تأمین دی اکسید کربن عمدتاً برای جبران رقیق سازی مربوط به نفوذ طبیعی هوا صورت می گیرد؛ در حالیکه برای گلخانه ای با پوشش دوجدارة پلی اتیلن مقدار دی اکسید کربن مورد نیاز برای جبران نفوذ هوا و فتوسنتز به یک اندازه خواهد بود. ظرفیت مشعل مورد نیاز : جهت محاسبة ظرفیت مشعلها فقط گاز طبیعی و پروپان در نظر گرفته شده است. این موضوع از آنجا نشأت می گیرد که این سوختها عمومی ترین سوختهای مورد استفاده در صنعت می باشند. پرورش دهندگانی که دارای آنالیزگر گاز دی اکسید کربن یا کامپیوتر کنترل کنندة محیط نمی باشند، می بایست اندازة مشعلها را به صورت کاملاً دقیق تعیین کنند. این دقت مخصوصاً در مورد گلخانه های ساده با پوشش معمولی کاملاً ضروری است. در جدول1-2 ظرفیت مشعل های مورد نیاز برای تثبیت ppm 1300 دی اکسید کربن در گلخانه درج شده است. این مقادیر بر اساس نرخهای جبران، که قبلاً اشاره شد، لیست شده اند. با توجه به مقادیر توصیه شده در این جدول، می توان محاسبه کرد که وقتی از گاز طبیعی به عنوان سوخت استفاده می شود، رطوبت نسبی به اندازة 3 تا 6 درصد افزایش خواهد یافت. البته این افزایش از حرارت تولید شده توسط مشعلهای 2CO متأثر نخواهد شد؛ به خصوص هنگامی که درجه حرارت به اندازة یک درجه سانتیگراد افزایش یابد، هیچ تأثیری بر روی رطوبت نسبی نخواهد داشت. در چه زمان هایی تأمین دی اکسید کربن صورت می گیرد؟ از آنجا که به طور طبیعی فرآیند فتوسنتز در روشنایی روز صورت می گیرد، تأمین دی اکسید کربن در هنگام شب لازم نیست. با این وجود، در روزهای ابری برای جبران نرخ کمتری از فتوستز، تأمین دی اکسید کربن برای گلخانه توصیه می شود. البته در این صورت به دلیل کاهش نرخ فتوسنتز، تغلیظ دی اکسید کربن به مقدار بیشتری صورت خواهد گرفت. تأمین دی اکسید کربن را باید یک ساعت قبل از طلوع آفتاب آغاز و یک ساعت قبل از غروب متوقف نمود. تأمین دی اکسید کربن هنگامی که از روشنایی high pressure sedium (HPS) در شب استفاده می شود، به صورت کاملاً جدی توصیه می شود. اگرچه سطح بهینة دی اکسید کربن با افزایش شدت نور افزایش می یابد، اما این کار با توجه به سرعت باد و برای تثبیت غلظت ppm 1000 وقتی که دریچه ها بیش از 10 تا 15 درصد باز می باشند (یا اینکه فن های خروجی در حال کار هستند)، اغلب کار بیهوده ای می باشد. مطلب مهم این است که پرورش دهندگان، دی اکسید کربن را در سراسر گلخانه به صورت یکنواخت توزیع نمایند. گردش هوای اضافی در گلخانه می تواند نرخ توزیع دی اکسید کربن را به وسیلة کاهش لایة مرزی در اطراف سطح برگها افزایش دهد. کننده تنفس لازم به نظر می‌رسد. جدول ظرفیت مشعل مورد نیاز برای تثبیت ppm 1300 دی اکسید کربن در گلخانه پروپان گاز طبیعی  2m1000/kwhr/2m1000/3m 2m1000/kwhr/2m1000 L/ گلخانة شیشه ای36-30 3.4-2.8 24-203.4-2.8 گلخانة پلاستیکی18-151.7-1.412-101.7-1.4 توزیع دی اکسید کربن در گلخانه : وجود یک سیستم توزیع مناسب دارای اهمیت زیادی است. توزیع دی اکسید کربن عمدتاً به حرکت هوا در میان گلخانه وابسته است. این موضوع ناشی از آن است که دی اکسید کربن در خلال فرآیند پخش نمی تواند مسافت زیادی را طی نماید. به عنوان مثال هنگامی که برای یک محوطة بزرگ و یا برای چند گلخانة متصل به هم، تنها یک منبع دی اکسید کربن مورداستفاده قرار می گیرد، سیستم توزیع مناسبی باید نصب شود. این سیستم باید به گونه ای طراحی شود که توزیع یکسانی را در سطح گلخانه، بخصوص زمانی که از دی اکسید کربن مایع یا دی اکسید کربن مربوط به گاز دودکش استفاده می شود، فراهم نماید. فن های جریان افقی یا سیستم های فن- جت، توزیع یکنواختی را به وسیلة حرکت حجم زیادی از هوادر گلخانه (هنگامی که دریچه های بالایی بسته شده و فن های خروجی در حال کار نمی باشند) فراهم می نمایند. امروزه پرورش دهندگانی که از دی اکسید کربن مایع یا دی اکسید کربن مربوط به گاز دودکش استفاده می کنند، از سیستم توزیعی با شیر مرکزی همراه با لوله های منحصر به فرد، که دارای سوراخ هایی با فاصله مساوی هستند، استفاده می کنند. این لوله ها در قسمت پایین محصولات (سایه بان) قرار گرفته اند. البته جریان هوا در گلخانه نیز کسب دی اکسید کربن توسط محصولات را افزایش می دهد. در واقع با این کار لایة مرزی اطراف برگها کاهش یافته و مولکولهای دی اکسید کربن به سطح برگها نزدیکتر می شوند. خسارت ناشی از تأمین دی اکسید کربن بر روی گیاهان : هرگز نباید اجازه داد که غلظت دی اکسید کربن در گلخانه از حد مجاز بالاتر رود. غلظت دی اکسید کربن به اندازة ppm 5000 می تواند موجب سرگیجة انسان شود. میزان بالاتر دی اکسید کربن از آنچه که توصیه شده میتواند موجب از بین رفتن برگهای پیر خیار و گوجه فرنگی گردد. برگهای بنفشة آفریقاییبسیار سخت و شکننده شده و رنگ خاکستری متمایل به سبزی به خود می گیرند. در این حالت اغلب گلبرگها حالت بدشکلی داشته و به طور کامل باز نمی شوند. علائم مشابهی در گلهای فریزی که برای آنها مشعل های دی اکسید کربن به عنوان منبع تأمین حرارت گلخانه مورد استفاده قرار گرفته اند و به این وسیله مقادیر مفرطی از دی اکسید کربن تولید و به گلخانه وارد شده است مشاهده گردیده است. باید توجه داشت که به جز در مواقع ضروری نباید از مشعل های دی اکسید کربن به عنوان سیستم حرارتی استفاده نمود. از آنجایی که دی اکسید سولفور (ppm 0.2 در هوای اتمسفر) می تواند موجب فساد شدید گیاهان شود، محتویات سولفور در سوخت مورد استفاده نباید بیش از 0.02 درصد باشد. سوختهایی مانند No.2 oil و bunker C (# 6 Oil) برای تأمین دی اکسید کربن مناسب نمی باشند. اتیلن در غلظت ppm 0.05 و پروپیلن در سطوح بالاتر می توانند موجب پیری زودرس گیاهان خیار و گوجه فرنگی گردند. اتیلن اغلب در اثر احتراق ناقص تولید می شود. در حالیکه تولید پروپیلن معمولاً مربوط به استفاده از پروپان می باشد. خطوط نشت دار تأمین پروپان در گذشته خسارت های مالی جدی به پرورش دهندگان وارد ساخته است. مونو اکسیدکربن (CO) که معمولاً به خودی خود مسأله ای ایجاد نمی کند، اغلب به عنوان شاخص احتراق ناقص مورد استفاده قرار می گیرد. تجاوز میزان مونو اکسید کربن از ppm 50 در گاز دودکش نشان دهندة وجود اتیلن به مقداری است که می تواند موجب خسارت شود. مشعل هایی که دمای شعلة بالایی دارند، می توانند موجب تشکیل اکسیدهای نیتروژن (NOx و 2NO) شوند. مقادیر بیش از اندازة اکسیدهای نیتروژن می تواند باعث کاهش رشد و حتی از بین رفتن گیاهان شود. باید بویلرهای مجهز به مشعلهایی که NOx کمی تولید می کنند برای تأمین دی اکسید کربن از گاز دودکش مورد استفاده قرار گیرند. وجود مقدار کمی از مخلوط 2SO و NOx، خسارت بیشتری از وجود مقادیر بالا از هر کدام از آنها بر گیاهان وارد می کند. استفادة بیش از حد و طولانی مدت از دی اکسید کربن (به خصوص در مورد گوجه فرنگی) می تواند منجر به عدم پاسخ گیاه نسبت به تأمین دی اکسید کربن شود. انقطاع در استفاده از دی اکسید کربن برای چند روز می تواند موجب بهبود پاسخ گیاهان شود. توجه : یک کیلوگرم دی اکسید کربن برابر 570 لیتر است. یک متر مکعب گاز طبیعی می تواند 1000 لیتر (kg 1.8) دی اکسید کربن و 1.4 لیتر آب تولید نماید. یک متر مکعب گاز طبیعی برابر 0.75 لیتر نفت سفید و برابر یک لیتر پروپان جهت تولید مقادیر یکسان دی اکسید کربن می باشد. دی اکسید کربن تکمیلی : دی اکسید کربن تکمیلی مربوط به تغلیظ آن در فضای گلخانه برای فراهم کردن مادة خام بیشتر جهت فرایند فتوستنز است. نور، آب و دی اکسید کربن به وسیلة گیاهان طی فرآیند فتوسنتز، جهت تولید کربوهیدراتها برای رشد و متابولیسم گیاه، مورد استفاده قرار می گیرند. میزان رشد گیاه به تعادل بین ساخت ترکیبات بالا انرژی(کربوهیدراتها) از دی اکسید کربن و آب در فرآیند فتوسنتز و بکارگیری این ترکیبات توسط فرآیند تنفس گیاه وابسته است. می دانیم که مواد خام مورد نیاز جهت فتوسنتز، آب و دی اکسید کربن می باشد. مطالعات بیشماری روی محدودة زیادی از محصولات نشان داده که، میزان دی اکسید کربن موجود در اتمسفر نرخ فتوسنتز را محدود می نماید. آب احتمالاً یک فاکتور محدود کنندة مستقیم در مورد فتوسنتز نمی باشد. وقتی گیاهان به نقطه پژمردگی می رسند، در بافتهای خود مقادیر کافی آب برای فتوسنتز دارند. با این وجود پژمردگی باعث می شود که دریچه های دهانی (استومتا) گیاه بسته شوند؛ در نتیجه دی اکسید کربن موجود در بافتها به سرعت مصرف شده و دی اکسید کربن جدیدی نمی تواند به برگها وارد شود. بنابراین تأثیر غیرمستقیم کمبود آّب بر روی نرخ فتوسنتز احتمالاً به وسیلة محدود کردن تأمین دی اکسید کربن صورت می گیرد. دی اکسید کربن موجود در اتمسفر غلظتی حدود ppm 340 دارد. البته این یک مقدار میانگین است. مقدار غلظت واقعی دی اکسید کربن در یک موقعیت مشخص می تواند متفاوت با این مقدار باشد. تغییرات آب و هوایی موجب 4 تا 8 درصد تغییر در غلظت دی اکسید کربن به صورت روزانه یا فصلی می گردد. این تغییرات ناشی از افزایش یا کاهش تابش خورشید، درجه حرارت، رطوبت نسبی و عبور جریانهای پرفشار می باشد. غلظت دی اکسید کربن در جو همچنین توسط فعالیت های انسانی، مانند سوزاندن سوخت های فسیلی، متأثر می گردد. غلظت دی اکسید کربن معمولاً در نزدیکی شهرها، کارخانجات و فعالیت های احتراقی بسیار بیشتر است. در یک گلخانه که پر از گیاه است، غلظت دی اکسید کربن، تا زمانیکه درطول روز تهویه صورت گیرد، از غلظت دی اکسید کربن محیط پیروی می کند. غلظت دی اکسید کربن در طول دورة تاریکی بالا می رود؛ چرا که گیاهان هیچ دی اکسید کربنی برای فتوسنتز مصرف نمی کنند و به علاوه دی اکسید کربن به واسطة تنفس گیاهان و دیگر ارگانیسم ها تولید می شود. در طول دورة روشنایی که تهویه صورت نگیرد، غلظت دی اکسید کربن به پایین تر از غلظت آن در محیط افت می نماید. تجدید هوا، اگر مقدور باشد، می تواند راه مؤثری برای تثبیت غلظت دی اکسیدکربن در گلخانه باشد. با این وجود هنگامی که در یک گلخانه شدت نور بالا باشد و سرمای بیرون مانع از تهویة مناسب شود، غلظت دی اکسید کربن افت خواهد کرد. در یک گلخانه کاملاً بسته، غلظت دی اکسید کربن تا حدود 150 تا ppm 200 افت می نماید. این مقدار غلظت در نزدیکی نقطة جبران دی اکسید کربن قرار دارد. در این نقطه، دی اکسید کربن تولید شده توسط تنفس گیاه با مقدار مصرف شدة آن در فرآیند فتوسنتز برابر خواهد بود. هنگامی که نقطة جبران دی اکسید کربن(هرچند به مدت کوتاهی) فرا برسد، رشد گیاهان به مقدار زیادی کاهش می یابد. مطالعات زیادی نشان داده است که اگر دی اکسید کربن با غلظتی بالاتر از غلظت آن در محیط در اختیار گیاه قرار گیرد، موجب بهبود رشد گیاه می شود. خصوصاً 3 تا 4 برابر غلظت بیشتر دی اکسیدکربن، رشد گیاه را به اندازة 10 تا 25 درصد افزایش می دهد. دی اکسید کربن تکمیلی موجب افزایش سطح برگها، وزن خشک گیاه، شاخه های جانبی و در بسیاری از موارد موجب کاهش زمان گلدهی می شود. تأمین دی اکسید کربن در طول روز به اندازة 800 تا ppm 1000، برای افزایش رشد بسیاری از محصولات مانند بنفشة فرنگی، گل شمعدانی، گل حن، بگونی، گل اطلسی، گل داودی، گل مینای چینی، و گلهای رز مورد استفاده قرار گرفته است. در یک گلخانه ممکن است در زمانهای بخصوصی غلظت دی اکسید کربن به پایین تر از سطح محیط کاهش یافته و رشد گیاهان محدود گردد. در یک گلخانه کاملاً درزبندی شده در طول زمستان و درحالیکه دریچه ها کاملاً بسته اند، میزان دی اکسید کربن به طور کامل افت می نماید. در روزهای آفتابی سرد که تعویض هوای اندکی صورت می گیرد، عمل فتوسنتز گیاهان می تواند سطح دی اکسید کربن داخل را به مقدار زیادی کاهش دهد؛ و به این ترتیب نرخ فتوسنتز محدود می گردد. از آنجا که دی اکسید کربن به صورت گاز می باشد، همانند بسیاری از گازها از لحاظ کنترل دارای دشواریهایی می باشد. به محض اینکه محیط گلخانه گرم شود به تجدید هوا نیازمند است، لذا دی اکسید کربن تکمیلی از طریق دریچه ها به خارج رانده می شود. بنابراین اضافه کردن دی اکسیدکربن به محیط گلخانه به شرایط آب و هوایی سرد و ایام بخصوصی از سال محدود می گردد. دی اکسید کربن – طول عمر گیاه : تأثیر دی اکسید کربن تکمیلی به زمانبندی، استمرار و غلظت آن وابسته است. بکارگیری دی اکسید کربن تکمیلی در مورد نهالهای تخمی منجر به کاهش زمان نشاکاری، افزایش انباشتگی مادة خشک و سطح برگها، بیشتر از زمانی که تحت شرایط محیط بیرون قرار می گیرند، می شود. در مورد گیاه بگونیا با آزمایش کردن سطوح مختلف دی اکسید کربن و نور مصنوعی در گلخانه نتایج جالبی به دست آمده است. در صورتیکه بگونیا در معرض ppm 970 دی اکسید کربن، نور ملایم و دمای بالا (80 درجه فارنهایت) قرار گیرد، برداشت نشا چهار هفته طول خواهد کشید. این نتایج نشان دهندة 47% کاهش در زمان لازم برای برداشت نشا در مقایسه با موردی است که بدون اضافه کردن دی اکسید کربن صورت گرفته است. آزمایش مشابهی نیز در مورد گل شمعدانی و بنفشة فرنگی نشان داده، در صورتیکه دی اکسید کربن به میزان ppm 1000 در دسترس گیاه قرار گیرد، زمان لازم جهت برداشت نشا به میزان دو هفته کاهش خواهد یافت. واکنش گیاهان جوان نسبت به تأمین دی اکسید کربن بسیار بیشتر است. بنابراین زمان سنجی در تأمین دی اکسید کربن دارای اهمیت زیادی می باشد. دی اکسید کربن- دما : دمای مناسب می تواند تأثیر قابل توجهی بر میزان پاسخ گیاه نسبت به تأمین دی اکسید کربن داشته باشد. در مورد گل داودی افزایش دمای روزانه و تأمین دی اکسیدکربن (باهم)، موجب افزایش طول ساقه و وزن تر گیاه می شود. این افزایش بیشتر از حالتی است که هر یک از این عوامل به تنهایی در اختیار گیاه قرار گیرد.جدول تأثیر دی اکسید کربن و دمای روزانه و شبانه بر وزن تر و طول ساقه در گل داودی Day-Night Temp °F CO2 (ppm)60-70محیط60-701000 ppm60-80محیط60-801000 ppm وزن تر    ‘Souvenir’100132129148‘Pink Champagne’100122118133طول ساقه    ‘Souvenir’100117121128‘Pink Champagne’100114118126 دمای بالا در شب دارای تأثیر بسیار اندکی بر روی میزان پاسخ گیاه نسبت به تأمین دی اکسید کربن می باشد. مطالعات زیادی نشان داده اند که دمای بهینة روزانه برای رشد گیاهان، با افزایش غلظت دی اکسید کربن، افزایش می یابد. یک حساب تخمینی نشان می دهد، در صورتیکه دی اکسیدکربن تکمیلی در دسترس گیاه قرار گیرد، دمای روزانه را باید به اندازة 5 تا 10 درجة فارنهایت افزایش داد. یک نتیجة منطقی حاصل از بالا بردن دمای روزانه این است که می توان تجدید هوا را قطع کرده و دورة غنی سازی را تمدید نمود. دی اکسید کربن - نور در رابطه با تأثیر نور روی فتوسنتز باید گفت که هر گیاهی دارای یک مقدار ماکزیمم شدت نور (منحصر به فرد) می باشد که میزان بالاتر از آن نرخ فتوسنتز را افزایش نمی دهد. این مقدار را نقطة اشباع نور می نامند. تا زمانی که شدت نور از مقادیر پایین تا نقطة اشباع نور افزایش یابد، فتوسنتز نیز افزایش خواهد یافت. البته اگر دی اکسید کربن تکمیلی به محیط پرورش گیاه اضافه گردد، نقطة اشباع نور در شدت نور بالاتری به دست آمده و نرخ بیشتری از فتوسنتز حاصل می گردد. جدول تأثیر نور تکمیلی و دی اکسید کربن بر رشد محصول گوجه فرنگی  Height (cm)% IncreaseDry Weight (g)% IncreaseControl + Ambient CO21/28‾8/3‾Light + Ambient CO23/516/828/161/342Control + 1500 ppm CO22/374/3256/31Light + 1500 ppm CO27/552/982/176/352 در حقیقت غنی سازی محیط گلخانه به وسیلة اضافه کردن دی اکسید کربن، رشد گیاهان را در همة موارد به جز در پایین ترین سطوح نور افزایش می دهد. این مطلب دلالت برآن دارد که حتی در شرایط نوری ضعیف، که می تواند رشد گیاه را محدود نماید، اضافه کردن دی اکسید کربن می تواند فتوسنتز و رشد گیاه را بهبود بخشد. اضافه کردن نور و تأمین دی اکسید کربن (با هم) برای بهبود رشد گیاه بسیار مناسب است. اضافه کردن نور تکمیلی تأثیر بیشتری نسبت به تأمین دی اکسید کربن بر رشد گیاه دارد. اما پیشرفت کامل زمانی حاصل می شود که این دو عامل را با هم به کار گرفت. دی اکسید کربن – مواد مغذی : با تأمین دی اکسید کربن در شرایط آفتابی و نیز با استفاده از افزایش مواد مغذی در دسترس گیاه می توان رشد گیاهان را تسریع بخشید. غلظت پایین مواد غذایی در محیط کشت موجب کاهش نرخ فتوسنتز و رشد گیاه می شود. در شرایطی که غنی سازی دی اکسید کربن انجام می شود و به خصوص هنگامی که توأماً نور تکمیلی هم مورد استفاده قرار می گیرد، کمبود مواد غذایی سریعاً رخ خواهد داد. باور عمومی بر این است که تحت شرایط غنی سازی دی اکسید کربن، میزان کوددهی را باید افزایش داد. آزمایشات مختلف نشان داده که در این حالت بعضی از مواد غذایی سریعاً در محیط کشت دچار کمبود می شوند. در حالیکه تغییرات مواد غذایی دیگر بسیار اندک است. بهترین توصیه این است که پرورش دهندگان از نمایشگرهای نشان دهندة میزان مواد غذایی در خاک و بافتهای گیاه استفاده کنند و سپس برنامه های کوددهی خود را بر اساس نتایج حاصله تنظیم نمایند. منابع مورد استفاده: دكتر قهرمان – احمد – گياه شناسي پايه – انتشارات دانشگاه تهران – 1383 ماير، آندرسون ، بونينگ ، فراتيان - مباني فيزيولوژي گياهي - حسين لساني، مسعود مجتهدي- انتشارات دانشگاه تهران- 1383 1. گاردنر ، پی،آر. بی . پی . ، یرسوار وال .، میشل . 1372 . فیزیولوژی گیاهان زراعی ،ترجمه :غ .سرمه نیا و ع . کوچکی . انتشارات جهاد دانشگاهی ؛ مشهد .چاپ سوم. 567 صفحه 2. نزار ، ام ، جی ،1370 .مبانی فیزیولوژی رشد و نمود گیاهان زراعی . ترجمه : ع . کوچکی و م. ح. راشد محصول ، م . نصیری محلاتی ، و ر . صدرآبادی . انتشارات بنیاد فرهنگی رضوی ،چاپ دوم . 404 صفحه . 3. کوچکی ، ع. و م. بنایان اول ، 1373 ، فیزیولوژی عملکرد گیاهان زراعی (ترجمه) 4. مدندوست ، مهدی . جزوه درسی فیزیولوژی گیاهان زراعی ، دانشگاه آزاد اسلامی فسا 1379 5. گوستاوا ،و ا. اسلافر ، 1376 مبانی فیزیولوژی اصلاح نباتات . ترجمه :رحیمیان ، حمید . بنایان ،محمد ،انتشارات جهاد دانشگاهی مشهد .

نظرات کاربران

نظرتان را ارسال کنید

captcha

فایل های دیگر این دسته