مقاله شبکه هاي عصبي و الگوريتم هاي ژنتيک در تجارت 17 ص

مقاله شبکه هاي عصبي و الگوريتم هاي ژنتيک در تجارت 17 ص (docx) 17 صفحه


دسته بندی : تحقیق

نوع فایل : Word (.docx) ( قابل ویرایش و آماده پرینت )

تعداد صفحات: 17 صفحه

قسمتی از متن Word (.docx) :

عنوان مقاله: شبکه هاي عصبي و الگوريتم هاي ژنتيک در تجارت چکيده: در عصر حاضر در بسياري از موارد ماشين ها جايگزين انسانها شده اند و بسياري از کارهاي فيزيکي که در گذشته توسط انسانها انجام مي گرفت امروزه توسط ماشين ها صورت مي گيرد . اگرچه قدرت کامپيوترها در ذخيره، بازيابي اطلاعات و اتوماسيون اداري ،.. غير قابل انکار است، اما همچنان مواردي وجود دارد که انسان ناچار است خودش کارها را انجام دهد. اما به طور کلي ، موارد مرتبط با ماشين شامل سيستم هايي است که در آن به علت ارتباطات پيچيده بين اجزا، مغز انسان از درک رياضي اين ارتباطات قاصر است . مغز انسان به مرور زمان با مشاهده توالي رفتارهاي سيستم و گاه آزمايش نتيجه اي که بر اثر دستکاري يکي از اجزاي سيستم به دست مي آيد تا حدي مي تواند عادتهاي سيستم را شناسايي کند . اين روند يادگيري بر اثر مشاهده مثالهاي متنوع از سيستم ، به کسب تجربه منجر مي شود. در چنين سيستم‌هايي مغز قادر به تجزيه و تحليل داخلي سيستم نيست و تنها با توجه به رفتارهاي خارجي، عملکرد داخلي سيستم را تخمين مي زند و عکس العملهاي آن را پيش بيني مي کند.چگونگي اداره حجم انبوه اطلاعات و استفاده موثر از آنها در بهبود تصميم گيري ، از موضوعات بحث برانگيز در عصرحاضر است. يکي از مسائل مهم تحقيقاتي در زمينه علوم کامپيوتر، پياده سازي مدلي شبيه به سيستم داخلي مغز انسان براي تجزيه و تحليل سيستم هاي مختلف بر اساس تجربه است .در اين راستا شبکه هاي عصبي يکي از پوياترين حوزه‌هاي تحقيق در دوران معاصر هستند که افراد متعددي از رشته هاي گوناگون علمي را به خود جلب کرده است .استفاده از شبکه‌هاي عصبي و الگوريتم هاي ژنتيک در حل مسائل پيچيده کاربردي اين روزها بيش از بيش رواج يافته است . در اين مقاله پس از معرفي اجمالي شبکه هاي عصبي و الگوريتم هاي ژنتيک، ارتباط وسهم آن ها در تصميم گيري در حوزه تجارت وکسب وکار مورد بررسي قرارگرفته است . مقدمه توجه به کاربرد تکنيک هاي هوش مصنوعي و ابزارهاي مدل سازي در حوزه کسب و کار به طور فزاينده اي در حال افزايش است. در اين راستا سيستم هاي خبره جايگاه ويژه اي يافته اند. در چند دهه گذشته دو عنوان شبکه هاي عصبي و الگوريتم هاي ژنتيک از موضوعاتي بوده اند که توجه بسياري از دانشگاهيان را به خود جلب کرده اند . اين دو به عنوان ابزاري نيرومند در حل مسائلي که ديگر توسط متدلوژي ها و روش هاي سنتي گذشته قابل حل نبودند، شناخته شده و مورد استفاده قرارگرفته اند. اين روزها استفاده از آنها به زندگي اجتماعي ما نيز تسري يافته تا جايي که کاربرد آنها در تصميم گيري ها نقش حياتي يافته است . اين مقاله شواهدي را مبتني برامکان استفاده اخلاقي از شبکه هاي عصبي و الگوريتم ها ي ژنتيک که به منجر به تصميم گيريهاي موفقيت آميز در ارتباط با مسائل مرتبط با کسب و کار مي شود ارائه مي کند . براي اين منظور لازم است که بررسي تطبيقي اي در رابطه با تلاشهاي ديگر محققان در قالب ادبيات موضوع صورت گيرد . به همين دليل ، در تحقيق ما بر نقش محققان عملياتي در حوزه کاربرد شبکه هاي عصبي و الگوريتم هاي ژنتيک تأکيد شده است . همچنين در کنار ايجاد چنين پايگاهي براي محققان ، به سوالات اساسي زير نيز پاسخ داده شده است : -1 آيا کاربردهاي سيستم هاي مبتني بر هوش مصنوعي مي تواند از فرايندهاي تصميم گيري شرکت شما پشتيباني کند ؟ -2 آيا اسناد ودلايل و مدارک معتبري براي اثبات اين ادعا وجود دارد ؟ -3 آيا اينها تنها يک تئوري و ايده دانشگاهي است يا داراي قابليت کاربرد و تعميم نيز هست؟ به عبارت ديگر ، با درنظر گرفتن مطالعات مشابه در رابطه با استفاده از سيستم هاي خبره در کسب و کار، نويسندگان و محققان در آرزوي دستيابي به فرصتي جهت بحث مقايسه اي در باره اين سه متدلوژي هوشمند هستند (متاکسيوس و پساراس 2003 ) . يکي از مهم ترين و بحث‌برانگيزترين تحقيقات ، بررسي صورت گرفته توسط لايبوتز (2001) است که نتيجه آن تحت عنوان «سيستمهاي خبره و کاربرد آنها» مطرح شد.ساختار اين مقاله به صورت زير است‌: در ابتدا مروري بر پايه و اساس شبکه هاي عصبي و الگوريتم هاي ژنتيک خواهيم داشت و سپس به بازنگري جامعي بر کاربرد شبکه هاي عصبي و الگوريتم هاي ژنتيک در حوزه کسب و کار خواهيم پرداخت و نهايتا آن را با نتايج و پيشنهاداتي براي تحقيقات کاربردي آينده به پايان خواهيم رساند . فناوري شبکه عصبي شبکه هاي عصبي يک تکنيک پردازش اطلاعات مبتني بر روش سيستم هاي عصبي بيولوژيکي مانند مغز و پردازش اطلاعات است. مفهوم بنيادي شبکه هاي عصبي ، ساختار سيستم پردازش اطلاعات است که از تعداد زيادي واحدهاي پردازشي (نورون‌) مرتبط با شبکه ها تشکيل شده اند‌. سلول عصبي بيولوژيکي يا نورون، واحد سازنده سيستم عصبي در انسان است. يک نورون ازبخشهاي اصلي زير تشکيل شده است : 1) بدنه سلولي که هسته در آن است و ساير قسمتهاي سلولي از آن منشأ گرفته است. 2) هسته 3) آکسون که وظيفه آن انتقال اطلاعات از سلول عصبي است. 4) دندريت که وظيفه آن انتقال اطلاعات از سلول هاي ديگر به سلول عصبي است يک سيستم شبکه عصبي از تکنيک‌هاي مورد استفاده انسان در يادگيري از طريق استناد به مثالهايي از حل مسائل استفاده مي‌کند (هايکين ،1994 ) . هر نورون وروديهاي متعددي را پذيراست که با يکديگر به طريقي جمع مي شوند . اگر در يک لحظه تعداد ورودي هاي فعال نرون به حد کفايت برسد نرون نيز فعال شده و آتش مي کند . در غير اين‌صورت نورون به صورت غير فعال و آرام باقي مي ماند .فعاليت هر نورون از مجموعه اي از يک يا چند ورودي ، عمليات و وظيفه خروجي براي محاسبه خروجيهايش تشکيل شده است . عملکرد اساسي اين مدل مبتني بر جمع کردن وروديها و به دنبال آن به وجود آمدن يک خروجي است . وروديهاي نورون از طريق دندريت ها که به خروجي نورون هاي ديگر از طريق سيناپس متصل شده اند وارد مي شوند . بدنه سلولي کليه اين وروديها را دريافت مي کند و چنانچه جمع اين مقاديراز مقداري که به آن آستانه گفته مي شود بيشتر شود در اصطلاح بر انگيخته شده يا آتش مي کند و درغير اين صورت خروجي نورون روشن يا خاموش خواهد شد. مدل پايه اي نورون به صورت شکل 1 تعريف مي گردد . امروزه شبکه هاي عصبي در کاربردهاي مختلفي از قبيل طبقه بندي داده ها و تشخيص الگو از طريق فرايند يادگيري که خود شامل مسائلي مانند تشخيص خط و شناسايي گفتار وپردازش تصوير است به کار مي روند .به مثابه سيستم هاي بيولوژيکي ، آموزش شامل تنظيم پيوندهاي بين سيناپس‌ها که درهر نورون وجود دارند است. به عبارت ديگر‌، اطلاعات آموخته شده به شکل ارزشهاي عددي به‌نام «وزن» که به هر واحد پردازش شبکه اختصاص داده مي‌شود ، ذخيره مي شوند .به طور کلي ، شبکه هاي عصبي مي توانند بين : روشهاي اتصال نورون ها، انواع روشهاي ويژه محاسبه عمليات نورون ها، روش انتقال الگوي عمليات از خلال شبکه و روشهاي يادگيري آنها که شامل نرخ يادگيري است، تمايز قائل شوند . با در نظر گرفتن ارتباطات بين نورون ها ، مي توان بين شبکه هاي لايه دار و بدون لايه تمايز قايل شد . شبکه هاي لايه دار گروهي ازنورون ها هستند که در لايه هايي مجتمع گرديده اند که بين لايه ورودي و خروجي - که تنها پيوند خارجي دارند - يک يا چند لايه پنهان وجود دارد . داده هاي ورودي از لايه ورودي به وسيله لايه هاي پنهان (لايه مياني ) به لايه خروجي منتقل مي‌شوند . سيگنالها ي جاري در شبکه هاي لايه دار به سمت جلو حرکت مي کنند که در اصطلاح فني به آنها پيش خور گفته مي شود در حالي که شبکه هاي بدون لايه داراي گره هاي اضافي بازخور هستند که از تقسيمات درست لايه ها جلوگيري مي کنندساختار پيوندها و تماسها و تعداد لايه‌ها و نورون ها تعيين کننده معماري شبکه است که بايستي قبل از استفاده از شبکه‌هاي عصبي تنظيم شود . همان طور که در شکل 2 نمايش داده شده است ، اگرچه در موارد مشخصي مي توان با موفقيت از شبکه هاي عصبي تک لايه استفاده کرد اما رسم بر اين است که شبکه هاي عصبي حداقل داراي 3 لايه باشند ( لايه ورودي ،لايه پنهان يا لايه مياني و لايه خروجي ) .قبل از آنکه شبکه آموزش داده شود‌، اوزان اختصاصي کوچک و به صورت تصادفي ارزش گذاري مي شوند . در خلال روند آموزش ، اوزان شبکه به شکل تدريجي تعديل مي شود تا جايي که محرز شود که کاملاً روابط فرا گرفته شده است . اين شکل از يادگيري ، يادگيري با سرپرست ناميده مي شود . وقتي يک الگو در لايه ورودي به‌کار گرفته مي شود تا آن جا جلو مي رود که ستانده نهايي در لايه خروجي محاسبه شود . ستانده شبکه با نتايج مطلوب مورد انتظار مدل مقايسه و خطاهاي موجود محاسبه مي‌شود .اين خطاها مجدداً به عنوان بازخورد به شبکه بازمي گردد تا تغييرات لازم در اوزان پيوندها براي کاهش خطا صورت گيرد .مجموعه اي از مثالهاي آموزشي داده _ ستانده مکرراً ارائه مي شود. تا جايي که مجموع امتيازات خطا به سطح قابل قبولي کاهش يابد . در اين جايگاه م‌ توان آن شبکه را به عنوان شبکه اي آموزش ديده در نظر گرفت . اما در روش ديگري که يادگيري بدون سرپرست ناميده مي شود‌، شبکه عصبي بايد بدون کمک گرفتن از جهان ، بتوانند کار آموزش را انجام دهد . واقعيت آن است که در عمل ازروش يادگيري باسرپرست و يا حداکثر از روشهاي ترکيبي استفاده مي شود و فرايند آموزش بدون سرپرست به شکل خالص تنها وعده‌اي است که شايد بتواند در آينده تحقق يابد . در حال حاضر و در کاربردهاي پيشرفته ، از روش آموزش بدون سرپرست براي ايجاد تنظيمات اوليه برروي سيگنال هاي ورودي شبکه هاي عصبي استفاده مي شود و باقي مراحل آموزش به روش با سرپرست ادامه مي يابد . حوزه هاي کاربردي شبکه هاي عصبي در موضوعات زير است: _ همبستگي ناشناخته بين ويژگيهاي مطلوب و ارزش متغيرهاي مسائل تصميم گيري (‌جايي که راه حل مسائل ناشناخته است ( _ مسائلي که داراي راه حل الگوريتم نيستند _ جايي که داده هاي ناقص وجود دارد مزيت اصلي شبکه هاي عصبي ، قابليت فوق العاده آنها در يادگيري و نيز پايداري شان در مقابل اغتشاشات ناچيز ورودي است ( فاوست ، 1994) .به عنوان مثال اگر از روشهاي عادي براي تشخيص دستخط يک انسان استفاده کنيم ممکن است در اثر کمي لرزش دست ، اين روشها به تشخيص غلطي برسند در حالي که يک شبکه عصبي که به صورت مناسب آموزش داده شده است حتي در صورت چنين اغتشاشي نيز به پاسخ درست خواهد رسيد . درنتيجه ، تاکيد ما بر اين حقيقت است که انتخاب شبکه درست با محاسبات صحيح، عامل اصلي در تضمين موفقيت عملکرد است . فناوري الگوريتم ژنتيک الگوريتم هاي ژنتيک روش قدرتمندي را براي توسعه اکتشافي مسائل بهينه سازي ترکيبي مقياس بزرگ فراهم آورده است . انگيزه اصلي مطرح کردن الگوريتم ژنتيک مي تواند اين گونه عنوان شودکه «تکامل تدريجي» به شکل قابل ملاحظه اي در توسعه انواع وگونه هاي پيچيده از طريق مکانيزم هاي نسبتاً ساده تکميلي نمود يافته است . حال سوال اساسي اين است : پذيرش کدام ايده از تئوري تکامل تدريجي مي تواند به ما در حل مسائل اين قلمرو کمک کند ؟ اين سوال با توجه به غناي پديده تکامل تدريجي جوابهاي متفاوتي دارد. هالند و دي جانگ (1975) از نخستين کساني هستندکه با معرفي مفهوم الگوريتم ژنتيک به عنوان يک تکنيک جستجوي عمومي - که از تکامل تدريجي بيولوژيک در قالب بقاي افراد اصلح و مبادله ساختارمند و تصادفي اطلاعات الگوبرداري مي کند- درصدد پاسخگويي به اين سوال برآمدند . يک الگوريتم ژنتيک مسئله را به صورت مجموعه اي از رشته ها که شامل ذرات ريزهستند کد گذاري مي کند ، سپس براي تحريک فرايند تکامل تدريجي ،تغييراتي را بر روي رشته ها ا عمال مي‌دارد. در مقايسه با الگوريتم هاي جستجوي محلي ، در جستجوي عمومي که تنها يک راه حل قابل قبول وجود دارد ، الگوريتم هاي ژنتيک جامعه اي از افراد را در نظر مي‌گيرند . کـــار با مجموعه اي از افراد، امکان مطالعه ساختارها و ويژگيهاي اصلي افراد متفاوت را که منجر به شناسايي و کشف راه حلهاي کارآمد تر مي شود، فراهم مي‌سازد . در طي مطالعه ، الگوريتم ژنتيک رشته هاي متناسب با ارزش را برمي گزيند و آن دسته از رشته‌هايي را که تنــاسب کمتري با جمعيت مورد بررسي دارند حذف مي‌کنند . مروري بر کاربردهاي تجاري بعد از مروري بر پيشينه شبکه هاي عصبي و الگوريتم هاي ژنتيک و پيشرفتهاي آنها ، مي توان حوزه هاي کاربردي آنها را در کسب و کار شناسايي کرد. بنابر اين در اين قسمت به بررسي انواع مسائل تجاري که به شکلي مناسب به‌وسيله شبکه هاي عصبي و الگوريتم هاي ژنتيک قابل حل خواهند بود ، مي پردازيم . اما قبل از آن توضيحي مختصر در ارتباط با موضوعات مرتبط با اين حوزه خواهيم داد

نظرات کاربران

نظرتان را ارسال کنید

captcha

فایل های دیگر این دسته