دانلود مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن 65 ص

دانلود مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن 65 ص (docx) 165 صفحه


دسته بندی : تحقیق

نوع فایل : Word (.docx) ( قابل ویرایش و آماده پرینت )

تعداد صفحات: 165 صفحه

قسمتی از متن Word (.docx) :

مقدمه ای بر شبکه های عصبی مصنوعی و کاربردهای آن: امروزه با شکسته شدن پی در پی استقلال ، شاخه های مختلف علوم و بهره وری شاخه ای از شاخه ی دیگر و پیشبرد مسائل پیچیده خود، پیوستگی و لاینفک بودن تمامی شاخه های علوم را نمایان تر می سازد که سرمنشأ تمامی آنها از یک حقیقت نشأت گرفته و آن ذات باری تعالی است.اولین تلاش ها به منظور ارائه ی یک مدل ریاضی برای سیستم عصبی انسان در دهه 40 توسط Mcculloch , pitts انجام شد ، که حاصل آن یک نورون ساده ی تک لایه ویک روش برای آموزش آن بود . در ادامه ی این کار Hebb نتایج آزمایشات پاولف را در مورد شرطی شدن ،گسترش داد و یک روش برای یادگیری ارائه کرد . در سال 1958 ،Rossonblatt شبکه ی پرسپترون را ارائه کرد . بعد از مدتی اثبات شد شبکه ی عصبی پرسپترون تک لایه نمی تواند تابع ساده ای مانند EX-OR را بیاموزد .بنابراین تقریباً تا دهه ی 80 تلا ش ها برای گسترش شبکه ی عصبی بسیار کم بود. سپس در طی یک مقاله اثبات شد که شبکه ی عصبی پرسپترون چند لایه می تواند به عنوان یک تخمین گر جهانی مطرح شود . بدین معنی که این شبکه قابلیت دارد هر تابع غیرخطی را با دقت دلخواه مدل سازی کند . از آن به بعد شبکه های عصبی مصنوعی گسترش یافتند و در زمینه های بسیاری از آنها استفاده شد . سیستم شبکه ی عصبی مصنوعی از مغز وسیستم عصبی انسان الهام گرفته شده و مانند مغز انسان از تعداد زیادی نورون تشکیل شده است . این شبکه ها مانند مغز انسان دارای قابلیت یادگیری هستندکه از مزیت های عمده ی این سیستم هاست در مواردی که نتوانیم یک الگوریتم حل به صورت فرمولی بیابیم یا تعداد زیادی مثال از ورودی و خروجی سیستم موردنظرمان در اختیار داشته باشیم و بخواهیم برای آن سیستم ، مدل ارائه کنیم یا اینکه یک ساختار از اطلاعات موجود بدست آوریم ، استفاده از شبکه های عصبی مصنوعی سودمند است . تاکنون برای شبکه های عصبی توپولوژی های مختلف همراه با کاربردهای متنوع ارائه شده است که طیف وسیعی از موضوعات را پوشش می دهد . 

نظرات کاربران

نظرتان را ارسال کنید

captcha

فایل های دیگر این دسته